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Abstract 
 
In modern vehicles, the cable harness complexity still increases due to the rising 
amount of functions. In addition, higher reliability demands occur. As the insulation 
temperature highly influences the cable aging, thermal considerations play an im-
portant role with respect to the reliability of the system. The cable aging process can 
be monitored by applying intelligent fusing strategies based on the known cable tem-
perature. The calculation of the axial transient temperature distribution in cable struc-
tures is a complex task that is often solved numerically. In this paper, an analytical 
approach to model the temperature of a single cable in air is presented based on a 
calculation in the Laplace domain. Switching on and off of the load current is consid-
ered, which enables the calculation of the temperature distribution during the cable 
heating and cool down. The approach is validated using a numerical reference solution 
and measurement results. As further application the monitoring of the cable aging is 
discussed. 
 
 

Kurzfassung 
 
Aufgrund der zunehmenden Anzahl an Funktionen nimmt die Komplexität des Kabel-
baumes in modernen Kraftfahrzeugen noch immer zu. Zusätzlich steigen die Anforde-
rungen an die Zuverlässigkeit. Da die Temperatur der Kabelisolierung stark das Alte-
rungsverhalten der Leitungen beeinflusst, sind thermische Betrachtungen für die Be-
urteilung der Zuverlässigkeit des Systems von großer Bedeutung. Die Alterung im Ka-
bel kann durch die Anwendung von intelligenten Sicherungskonzepten basierend auf 
der bekannten Kabeltemperatur überwacht werden. Die Berechnung der axialen tran-
sienten Temperaturverteilung in Leitungsstrukturen ist eine herausfordernde Aufgabe, 
die häufig numerisch gelöst wird. In diesem Beitrag wird ein analytischer Ansatz für die 
Temperaturberechnung für eine ungeschirmte Einzelleitung in Luft unter Verwendung 
der Laplace-Transformation präsentiert. Der Temperaturverlauf im Aufheiz- und Ab-
kühlungsprozess nach Ein- und Ausschalten des Laststromes wird modelliert. Die Va-
lidierung erfolgt mit Hilfe einer numerischen Referenzlösung und mit Messergebnis-
sen. Als weitere Anwendung wird die Überwachung der Alterung einer Leitung disku-
tiert.  
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1 Introduction 
 
In the cable harness development process maximum currents must be estimated and 
the cable has to be dimensioned accordingly. The design must avoid overload under 
normal conditions. Once under operation, the cable has to be protected from damage 
caused by high temperatures. Classically, melting fuses are used to fulfill this task. An 
exemplary application in a vehicle is shown in Figure 1. Those melting fuses cannot 
meet the growing requirements concerning diagnosis and reset functions [1]. That is 
why electronic fuses [2] (see Figure 1) were developed, that use smart fusing strate-
gies. The tripping strategies of such fuses are based on insulation temperature esti-
mations. In case of a too high temperature, the circuit is interrupted. For various rea-
sons, often, it is not possible to measure the cable temperature directly. Indirect model-
based approaches for a current based ampacity calculation are more feasible. 
 

 
 
Since fuses are very cost sensitive components, the needed computing power has to 
be low. Computationally efficient models are required. That is why numerical methods 
can be critical. 
Several electrothermal cable models were developed in the past, for example in [3, 4, 
5], with strongly varying properties. Previous works frequently used radial thermal ca-
ble models [6, 7]. Modelling only the radial heat flow through the cable means neglect-
ing the axial heat flow. Those models lead to a good approximation of the temperature 
for long cables with negligible influence of the beginning and the end of the cable. In 
real applications, the cable terminations affect the cable temperature and provide im-
portant boundary conditions. Neglecting those may lead to high calculation errors. That 
is why the axial heat flow needs to be considered to get results that are more precise. 
Furthermore, especially for short cables, the ampacity might be significantly higher 
than a calculation with a radial model would estimate if the contacts cool the cable. To 
consider this and exploit more of the cable’s current carrying capacity, axial cable mod-
els can be advantageous, which leads to more complex models, see for example [8]. 
Another property that influences the complexity of the model is whether or not the time 
dependency is considered. Since high currents can be tolerated through the cable for 
a short period of time, transient models as for example in [4] and [9] are necessary. 
Classically, models that consider the axial as well as transient temperature develop-
ment are based on numerical approaches. In this paper, an analytical approximation 
for the axial transient temperature distribution in an insulated cable is presented.  
As shown for example in [10], the electrical transmission line theory can be adapted 
for thermal investigations. There, an equivalent circuit for an infinitesimally short cable 
segment is used to derive a differential equation. The axial voltage respectively current 
distributions are calculated as a solution of this differential equation [11]. This precede 

 

Figure 1: (a) Melting fuses and (b) smart fuses in vehicular application. 
 

(a) (b) 
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is adapted for thermal investigations in [12] and extended in this contribution. As a 
result, the temperature at each position along the cable and each point in time can be 
calculated independently. An iterative approach is presented to consider nonlinear ca-
ble parameters. 
In chapter 2, the fundamental model is presented. Earlier research is shortly summa-
rized. The solution is expanded to enable the consideration of switching off the current 
in chapter 3. In chapter 4, the measurement procedure is presented and in chapter 5, 
the solution is validated using numerical reference solutions and measurement results. 
The applicability of the solution is discussed in chapter 6 using an application example. 
The results are summed up in chapter 7. 
 
 

2 Analytical Calculation of Cable Heating 
 
2.1  Fundamental Model 
 
This chapter is based on [12]. There, a single cable of length 𝐿 oriented in 𝑧-direction 
consisting of a conductor with the radius 𝑟c and an insulation with the outer radius 𝑟i as 
shown in Figure 2 is examined. 
 

 
 
Analogously to the electrical transmission line theory, the equivalent circuit for an in-
finitesimally short cable segment shown in Figure 3 is used. The per unit length heat 
source 𝑃e

′ represents the cable heating induced by the current 𝐼 that flows through the 
conductor and depends on the conductor temperature 𝑇. The per unit length capaci-
tance 𝐶′ is used to model the heat storing capacity of the complete cable (conductor 

and insulation). The per unit length admittance 𝐺′ describes the heat conduction 
through the insulation layer and the heat transfer from the cable to the ambient air via 
convection and radiation and therefore depends on the cable surface temperature 𝑇s 
and the ambient air temperature 𝑇e. The axial heat flow in the conductor is modelled 
using the per unit length resistance 𝑅′. The axial heat flow in the insulation is neglected 
due to the low thermal conductivity of the insulation compared to the conductor.  
 

 
 

 

Figure 2: Analyzed single cable.  
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Figure 3: Thermoelectric equivalent circuit for an infinitesimally short cable segment. 
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From this equivalent circuit, the partial differential equation is derived for the conductor 
temperature 𝑇: 
 

𝜕2𝑇(𝑧, 𝑡)

𝜕𝑧2 
− 𝐴

𝜕𝑇(𝑧, 𝑡)

𝜕𝑡
− 𝐵𝑇(𝑧, 𝑡) = 𝐶 (1) 

 
with 
 

𝐴 = 𝑅′𝐶′,   𝐵 = 𝑅′𝐺′,   𝐶 =  𝑅′(𝑃e
′ − 𝐺′𝑇e). (2) 

 
As initial and boundary conditions, constant temperatures are assumed: 
 

𝑇(𝑧, 0) = 𝑇0,    𝑇(0, 𝑡) = 𝑇1,    𝑇(𝐿, 𝑡) = 𝑇2. (3) 
 
 
2.2  Solution of the Differential Equation via Laplace Transform 
 
This differential equation is solved in [12] using the Laplace transform. In the Laplace 
domain, the corresponding ordinary differential equation is solved analytically. Using 
the approximation  
 

𝑒−𝐿√𝑠𝐴+𝐵 ±  1 ≈ ±1, (4) 

 
which is valid for large 𝐿, an analytical expression in the time domain is calculated:  
 

𝑇(𝑧, 𝑡) = −
𝐶

𝐵
− (
𝐶

𝐵
+ 𝑇0) Ξ(𝑡)[1 − Λ(𝑧L, 𝑡) − Λ(𝑧, 𝑡)]

−
1

2
[(
𝐶

𝐵
+ 𝑇1) Γ(𝑧, 𝑡) + (

𝐶

𝐵
+ 𝑇2) Γ(𝑧L, 𝑡)] 

(5) 

 
with 
 

Λ(𝑧, 𝑡) = erf (
𝑧

2
√
𝐴

𝑡
) ,   Ξ(𝑡) = 𝑒−

𝐵
𝐴𝑡 ,   𝑧L = 𝐿 − 𝑧, 

Γ(𝑧, 𝑡) = [erf (
𝐴𝑧 − 2𝑡√𝐵

2√𝐴𝑡
) − 1] 𝑒−𝑧√𝐵 + [erf (

𝐴𝑧 + 2𝑡√𝐵

2√𝐴𝑡
) − 1] 𝑒𝑧√𝐵. 

(6) 

 
This solution is validated using a numerical reference solution in [12].  
 
 
2.3  Iterative Approach to Include Nonlinear Parameters 
 
As already mentioned above, the parameters 𝑃e

′ and 𝐺′ in the equivalent circuit are not 
constant but depend on the cable and surface temperatures. This nonlinear component 
was neglected in the above presented solution. To take it into account, an iterative 
solution approach is developed in [12] and is shortly resumed here: After an initializa-
tion, the surface temperature and the parameters are calculated. Those are used to 
find the conductor temperature. As termination condition, the absolute difference 𝜎T =
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|𝑇𝑘 − 𝑇𝑘+1| between two iterations is calculated. The process is continued until this 
difference falls below ΔT,Limit = 0.001 K. In Figure 4, this approach is summed up.  

 

 
 
 
2.4 Expansion for Current Switch-Off 
 
Till now, solutions were only available for a constant current excitation that is switched 
on at 𝑡 = 0 [12]. Here, an expansion is developed that allows switching off the current 

𝐼0 at the time 𝑡̂. So, the time-dependent current follows a rectangular shape:  
 

𝐼(𝑡) = 𝐼0𝑡̂rect𝑡̂ (𝑡 −
𝑡̂

2
). (7) 

 
Therefore, the heat source 𝑃e

′ also follows a rectangular shape: 
 

𝑃e
′(𝑡) = 𝐼2(𝑡)𝑅ref

′ (1 + 𝛼T(𝑇 − 𝑇ref)) = 𝑃0
′ 𝑡̂rect𝑡̂ (𝑡 −

𝑡̂

2
). (8) 

 
𝛼T is the linear temperature coefficient for the conductor’s conductivity, and 𝑅ref

′  repre-

sents the electric per unit length resistance at the temperature 𝑇ref. The new partial 
differential equation is 
 

𝜕2𝑇(𝑧, 𝑡)

𝜕𝑧2 
− 𝐴

𝜕𝑇(𝑧, 𝑡)

𝜕𝑡
− 𝐵𝑇(𝑧, 𝑡) = 𝐶1 + 𝐶2 ⋅ 𝑡̂rect𝑡̂ (𝑡 −

𝑡̂

2
) (9) 

 
with 
 

𝐶1 = −𝑅
′𝐺′𝑇e,   𝐶2 = 𝑅

′𝑃0
′ . (10) 

 
Again, the solution is calculated using the Laplace domain. For the analytical transfor-
mation back into the time domain, the approximation (4) is used. The complete expres-
sion in the time domain is 
 

 

Figure 4: Iterative approach to consider nonlinear parameter dependencies. 
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𝑇on(𝑧, 𝑡) = −
𝐶1 + 𝐶2
𝐵

− (
𝐶1 + 𝐶2
𝐵

+ 𝑇0) Ξ(𝑡)[1 − Λ(𝑧L, 𝑡) − Λ(𝑧, 𝑡)]

−
1

2
[(
𝐶1 + 𝐶2
𝐵

+ 𝑇1) Γ(𝑧, 𝑡) + (
𝐶1 + 𝐶2
𝐵

+ 𝑇2) Γ(𝑧L, 𝑡)] 
(11) 

 

for 0 ≤ 𝑡 < 𝑡̂ and 
 

𝑇off(𝑧, 𝑡) = 𝑇on(𝑧, 𝑡) −
𝐶2
𝐵
{1 + Ξ(𝑡 − 𝑡̂)[1 − Λ(𝑧L, 𝑡 − 𝑡̂) − Λ(𝑧, 𝑡 − 𝑡̂)]

+
1

2
[Γ(𝑧L, 𝑡 − 𝑡̂) + Γ(𝑧, 𝑡 − 𝑡̂)]} 

(12) 

 

for 𝑡 ≥ 𝑡̂.  
 
 

3 Measurement Methods for Thin Cables 
 
The calculated temperature distributions are compared to real measurement results. 
In this chapter, two measurement techniques for thin cables are presented.  
In many applications, the temperature resilience of the insulation is critical. That is why 
the warmest position along the insulation has to be found. In typical environments, the 
surrounding air cools the cable, which means that the hottest spot of the insulation is 
at the transition to the inner conductor. So, the conductor temperature is relevant.  
The cable heats up the environmental air, so the ambient temperature varies during 
the measurement. Therefore, this temperature is measured additionally to the cable 
temperature. 
 
 
3.1  Indirect Temperature Measurement 
 
The indirect temperature measurement (see also [13]) is based on the measurement 
of the cable resistance: As the resistance of the cable depends on its temperature, the 
measurement of the cable resistance allows conclusions about the cable temperature. 
Because of the assumed low temperature rises, it is often sufficient to consider the 
linear temperature coefficient: 
 

𝑅cable = 𝑅ref(1 + 𝛼T(𝑇 − 𝑇ref)) ⇔ 𝑇 − 𝑇ref =
1

𝛼T
(
𝑅cable
𝑅ref

− 1). (13) 

 
The cable resistance is calculated from the current, that is injected by a current source 
into the cable, and the voltage drop across the measured cable section. Using this 
approach, the mean cable temperature across the section for the voltage measure-
ment is calculated. That is why this measurement method is used to measure the tem-
perature over time in the middle of a sufficiently long cable: Across the middle section 
of the length 𝐿meas, where the temperature and therefore the resistance is approxi-

mately constant, the measurement is done. The measurement current 𝐼meas is injected 
into the cable directly at the current source. That is to avoid an additional voltage drop 
across the contacts for the voltage measurement, which would be measured as well 
and therefore distort the measurement. The measurement method is shown in Figure 
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5. In total, the complete current flowing through the cable becomes 𝐼 + 𝐼meas, and, ob-
viously, the load current 𝐼 also (highly) influences the measured voltage drop.  
 

 
 
To eliminate this influence, a differential measurement is used: The voltage is meas-
ured three times. In the first and the third measurement, the negative measurement 
current −𝐼meas is used, in the second measurement, the positive current +𝐼meas is used. 
Using the first and third measurement and a linear interpolation as depicted in Figure 
6, the corresponding voltage for negative measurement current at the time of the meas-
urement with positive current is approximated. Then, the difference between the volt-
age measured with positive measurement current and this approximated correspond-
ing voltage for negative measurement current only depends on the measurement cur-
rent and no longer on the load current. In addition, a possible zero-point error of the 
measurement device is eliminated by only evaluation voltage differences. The meas-
ured resistance therefore is 
 

𝑅cable =
2𝑈2 − 𝑈1 − 𝑈3
2𝐼2 − 𝐼1 − 𝐼3

=
2𝑈2 − 𝑈1 − 𝑈3

4𝐼meas
. (14) 

 

 
 
At first, the reference resistance is measured without load current. The reference tem-
perature is the environmental temperature during this measurement. In the next step, 
the load current is switched on and the actual measurement of the cable resistance for 
the calculation of the cable temperature is performed. If the section for the voltage 

 

Figure 5: Scheme for the measurement setup. 
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Figure 6: Measurement procedure for the resistance calculation. 
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measurement is too short the measured voltage drop is small and the measurement 
errors can be high. That is why in general, this method is only applicable to longer 
cable sections with constant temperature. 
 
 
3.2  Thermocouples 
 
The axial cable temperature distribution is measured using thermocouples (type K). 
Those have to be connected to the conductor. The measured temperature is highly 
dependent on the quality of the connection between the cable and the thermocouple. 
If galvanically coupled thermocouples are used, the thermocouples themselves have 
to be installed electrically insulated from the conductor potential. Nevertheless, a good 
thermal coupling between thermocouple and conductor is essential for a precise tem-
perature measurement. In this case, for example Kapton tape (electrically insulating, 
thermally conductive) can be placed in between the conductor and the thermocouple. 
Heat-conducting paste is used to further improve the thermal coupling. The thermo-
couple leads away heat from the conductor itself and therefore influences the meas-
urement. As its diameter is small in comparison with the diameter of the conductor, this 
effect can be neglected here. 
 
 

4 Validation 
 
In this section, the previously derived calculation formulas are validated using a nu-
merical reference solution and measurement results. The numerical solution is found 
by using the partial differential equation that describes the problem and solve it by 
using the function “pdepe” of MATLAB [14].  

A 1.5   2 copper cable (specific heat capacity 𝑐c =  .4 ⋅ 10
6 J/ 3K , thermal conduc-

tivity 𝜆c =  86 W/K , resistivity at 20 °C 𝜌 = 1.86 ⋅ 10−8 Ω , linear temperature coeffi-

cient 𝛼T =  .9 ⋅ 10
−3 1/K) with PVC insulation (total radius with insulation 𝑟i = 1.7   , 

specific heat capacity 𝑐i = 2.245 ⋅ 10
6 J/ 3K, thermal conductivity 𝜆i = 0.21 W/K , 

emissivity 𝜀 = 0.95) and the length 𝐿 = 1.5   is examined. This cable is connected to 
massive copper plates at the cable ends to hold the cable end temperatures at constant 
values during the short measurements. Between the positions 𝑧 = 0. 5   and 𝑧 =
1.15  , the indirect temperature measurement is performed. Thermocouples are con-
nected to the conductor at 𝑧 = 5 c , 𝑧 = 10 c  and 𝑧 = 75 c . At the time 𝑡 = 0  , the 

current 𝐼 =  0 A is switched on and at the time 𝑡 = 490   it is switched off again. In 
Figure 7, the complete experimental setup is shown. 
In the cable modelling, a massive conductor is assumed. In real applications, often 
flexible cables are used. Then, the conductor consists of several braids with small air 
gaps in between. That is why in the modelling the differentiation between an effective 
copper cross section with a corresponding radius and the geometrical cross section 
that is filled with copper and air needs to be used. The examined flexible 1.5   2-
cable consists of  0 braids with a diameter of 𝑑braid =  0.25   . The complete area, 
that is filled with copper, therefore is  
 

𝐴Cu =  0 ⋅ 𝜋 ⋅ (
𝑑braid
2

)
2

≈ 1.47   2, (15) 

 
which leads to an effective copper radius of  
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𝑟c,eff = √
𝐴Cu
𝜋
= √7.5 ⋅ 𝑑braid ≈ 0.68   . (16) 

 
This effective radius is used for the calculation of the parameters that characterize the 
conductor: 
 

𝐶c
′ = 𝑐c𝜋𝑟c,eff

2 ,     𝑅′ =
1

𝜆c ⋅ 𝜋 ⋅ 𝑟c,eff
2 . (17) 

 
𝜆c is the thermal conductivity of the conductor. 𝑐c is the specific heat capacity per vol-
ume that is used to calculate the thermal per unit length capacitance for the conductor 
𝐶c
′. Together with the corresponding capacitance for the insulation 𝐶i

′, the complete 

cable capacitance results as  
 

𝐶′ = 𝐶c
′ + 𝐶i

′. (18) 

 
For the parameters describing the insulation, the inner radius of the insulation is rele-
vant. The outer radius of the complete cable with insulation 𝑟i = 1.7   . The thickness 
of the insulation layer is 𝑑i = 0.7   . This leads to the inner radius of the insulation 

𝑟c,geom:  

 
𝑟c,geom = 𝑟i − 𝑑i = 1   . (19) 

 
This value is used in the calculation of the parameters for the insulation: 

 

Figure 7: Experimental setup that combines the indirect temperature measurement 
and the temperature measurement with thermocouples. 
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𝑅λ
′ =

ln (
𝑟i

𝑟c,geom
)

2𝜋𝜆i
,      𝐶i

′ = 𝑐i𝜋(𝑟i
2 − 𝑟c,geom

2 ). 
(20) 

 
𝜆i is the thermal conductivity of the insulation and 𝑐i is the thermal conductivity of the 

insulation. The thermal per unit length resistance 𝑅λ
′  describes the heat transfer 

through the insulation. Together with the thermal per unit length resistance 𝑅α
′ , that is 

used to model the heat transfer between the surface of the cable and the surrounding 
air, the parameter 𝐺′ of the partial differential equation results: 
 

𝐺′ =
1

𝑅λ
′ + 𝑅α

′
. (21) 

 
In the above-mentioned calculation of the per unit length resistance 𝑅λ

′ , that describes 

the heat flow through the insulation, the insulation is assumed to be a perfect hollow 
cylinder. In the real cable, the insulation follows the structure defined by the braids and 
therefore differs significantly from this assumption. In Figure 8, a picture of the cross 
section of the insulation is shown.  
 

 
 
The green circle represents the outer circumference of the insulation and the black 
circle shows the assumed inner circumference of the insulation. Graphically, the real 
inner surface of the insulation is emulated (yellow curve in Figure 8). As the yellow 
curve is much longer than the black one, the coupling area between the conductor and 
the insulation is much higher than assumed before. Here, it is assumed that the heat 
flow is depending on the coupling area. Thus, the correction factor 𝐹 for the per unit 

length resistance 𝑅λ
′  is introduced and estimated as the relation between the lengths 

of the black and the yellow curve in Figure 8: 
 

𝐹 ≈ 0.69 ⇒ 𝑅λ,corr
′ = 𝐹 ⋅ 𝑅λ

′  (22) 

 
As the voltage measurement data is noisy due to the low voltage drop the measured 
data has to be filtered by a floating average filter.  
The ambient temperature varies during the measurement as the cable heats up the 
environmental air as shown in Figure 9. As the environmental temperature does not 
vary much during the measurement, in the simulation, a constant temperature of 25 °C 
is assumed.   
 

 

Figure 8: Cross section of the insulation with the assumed outer circumference 
(green), inner circumference (black) and the real inner surface (yellow). 
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The temperatures at the beginning and the end of the cable and the initial cable tem-
perature are set to the value of the ambient temperature. In Figure 10, the results are 
shown and the agreement between the measured and the calculated temperature de-
velopment is good. 
 

 
 
 

5 Application Example 
 
Higher insulation temperatures lead to an accelerated cable aging. Intelligent fuses 
enable the sophisticated monitoring of this aging process and extend the application 
range of a cable. Short-term overload situations can be tolerated. This is practically 
relevant especially for safety-critical tasks. In this chapter, the previously presented 
and validated methods are applied for this task. In the standard ISO 6722, for PVC, 

 

Figure 9: Environmental temperature development during the measurement.  

 

Figure 10: Numerically and analytically calculated and measured temperature devel-
opments for fixed (a) times and (b) spatial positions. 
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the continuous operation temperature 𝑇3000h = 105 °C, i.e. the cable can stand a tem-
perature of 105 °C for  000 hours, and the thermal overload temperature (6 hours) 
𝑇6h = 155 °C are defined. Generally, the cable insulation aging 𝑝aging can be calculated 

from the cable temperature in Kelvin 𝑇K using the Arrhenius equation in combination 
with Miner’s rule [15] as also proposed in [13] and [16]: 
 

𝑝aging = ∫
1

𝐴ar
𝑒
−
𝑏ar
𝑇K(𝑡

′) d𝑡′
𝑡end

𝑡=0

. (23) 

 
The parameters 𝐴ar and 𝑏ar are calculated by inserting the two values 𝑇3000h and 𝑇6h 
into this equation: 
 

𝑏ar =
ln (
 000 h
6 h

)

1
𝑇3000h

−
1
𝑇6h

= 2.0124 ⋅ 104 K, 

𝐴ar =  000 h ⋅ 𝑒
𝑏ar

𝑇3000h = 1. 9 ⋅ 10−18  . 

(24) 

 
Till now, cables are generally dimensioned to operate at temperatures below 𝑇3000h. 
With intelligent fuses unexpected overload situations with temporally limited higher 
temperatures can be considered and the remaining lifetime can be monitored. For tem-
peratures lower than 𝑇3000h, the aging is estimated using the temperature 𝑇3000h. 
Here, a single overload current pulse is assumed, that is switched on at the time 𝑡 = 0 
and lasts for the time 𝑡on. Afterwards, the current is zero again. It is assumed that the 
cable cools down afterwards and is not loaded again during this cool-down process. 
At first, in the simulation, the end time is calculated, after which the cable temperature 
has cooled down to 𝑇e + 1 K via the bisection method with a stop accuracy of 1  . Now, 
the aging for the complete process (heating up and cooling down again) is calculated. 
At first, it is calculated whether the critical insulation temperature (middle of the cable, 
as here, the highest temperatures appear) exceeds the value 𝑇3000h at the end of the 

heating up process (time 𝑡 = 𝑡on). If it does not, the aging is directly calculated via  
 

𝑝aging =
1

𝐴ar
𝑒
−

𝑏ar
𝑇3000h ⋅ 𝑡end. (25) 

 
If the temperature 𝑇3000h is exceeded, in the next step, the times during the heating up 
and cooling down are calculated at which the cable temperature crosses the value 
𝑇3000h (bisection method). Outside these points, again, 𝑇3000h is assumed for the aging 
calculation. In between these two points, the temperature development is approxi-
mated with rectangular shapes with the width Δ𝑡. In the middle of each interval (position 
𝑡𝑖), the temperature 𝑇𝑖 is calculated. Then, for the complete section with higher tem-

perature than 𝑇3000h, the cable aging is calculated via  
 

𝑝aging,>𝑇3000h =∑
1

𝐴ar
𝑒
−
𝑏ar
𝑇𝑖 ⋅ Δ𝑡

𝑖

. (26) 

 

This method is applied for an exemplary setup in the following: A 4   2 copper cable 
with PVC insulation (total radius with insulation 𝑟i = 1.7   ) and the length 𝐿 =     is 
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loaded with the current 𝐼 =  6 A for 𝑡on = 1200  . Worst case assumptions for the en-
vironmental temperature 𝑇e = 85 °C, the cable end temperatures 𝑇1 = 𝑇2 = 85 °C and 

the cable start temperature 𝑇0 = 85 °C are taken into account. Along the cable, at the 
position 𝑧 = 1.5  = 𝐿 2⁄  (cable middle), the highest temperatures appear. After 𝑡end =
1717  , the cable has cooled down to 𝑇e + 1 K = 86 °C. That is why the calculation is 
stopped at this point. Between the times 91   and 1262  , the cable temperature is 

higher than 𝑇3000h. Exemplarily, for presentation reasons the very rough discretization 
Δ𝑡 = 100   is chosen for the aging calculation here. In Figure 11, the analytically cal-
culated cable temperature, the approximated step function and the resulting calculated 
cable aging are shown. The complete process leads to about 4.2 % cable aging. For 

comparison, also, a lower current is evaluated: For 𝐼 = 18 A, the temperature 𝑇3000h is 
not exceeded. If this current lasts as before for 𝑡on = 1200  , after 𝑡end = 1525   the 

cable has cooled down to 𝑇e + 1 K = 86 °C. This process only consumes about 0.85 % 
of the cable aging. So generally, many overload situations can be tolerated but lead to 
an accelerated cable aging. The cable aging has to be monitored to warn the user in 
case of depleted lifetime and ensure a safe operation at any time. 
 

 
 
 

6 Conclusion 
 
In this contribution, an analytical approach for the calculation of the axial and transient 
temperature development of a single unshielded cable was extended to also model the 
cooling down of the cable after the load current is switched off. The approach is vali-
dated using a numerical reference solution and measurement results. An example for 
the application for the cable aging monitoring is presented. 
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Figure 11: Analytical temperature development and approximation for cable aging 
calculation.  
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