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Abstract. In this contribution, similarities and differences
between electrical and thermal effects on cables are inves-
tigated. In the electrical transmission line theory, a wide va-
riety of methods is known to describe the voltage and current
along cables. The potential for the adaption of some of those
methods to thermal problems is discussed. Exemplarily, for
an unshielded single cable, an analytical solution based on
the Laplace transform and an approach based on cascaded
equivalent circuits are compared with a numerical reference
solution and measurement results.

1 Introduction

Because of the rising complexity of electric systems, more
and more cables are necessary for the power supply of dif-
ferent components. Especially in safety-critical applications,
high demands concerning reliability and electrical resilience
are present (Horn et al., 2018). On the other hand, electrical
systems become more compact which complicates the heat
transport and leads to higher cable temperatures. Derating
of the temperature sensitive insulation materials can lead to
critical failures, and monitoring of cable temperatures is es-
sential to prevent the insulation from damages by too high
temperatures.

During the lifetime of a cable, temperatures might change
in a wide range, especially in mobile systems. Dimension-
ing of insulation geometry and materials is mostly done by
calculations based on the heat transfer differential equation.
Parameter sets are based on worst case assumptions (Wright
and Newberry, 2008). Due to nonlinear material parameters
the equation is nonlinear and mostly numerical methods are
used (He et al., 2013) leading to high calculation effort and
low transparency.

Figure 1. Smart fuse in an exemplary vehicular application.

To protect cables under operation, often melting fuses are
used. Those do not consider the actual cable status, but trig-
ger depending on the temperature of the melting wire. This
often causes over-dimensioned cables. Also, automated re-
setting is not possible for melting fuses. That is why elec-
tronic smart fuses (Tian et al., 2019) are more and more
applied as exemplarily shown for a vehicular application in
Fig. 1.

Especially in safety-critical environments, where overload
situations should be tolerated as far as possible, and a hard
interruption of the power supply has to be avoided, the use
of smart fuses may drastically enhance the reliability of the
complete system. A wide range of applications from auto-
mated driving applications or industrial applications to the
use in personal equipment is possible. Based on a thermal
model of the cable and current measurements, the cable in-
sulation temperature is calculated in real time and a semi-
conductor or a relay is used to interrupt the circuit in case of
too high temperature. Currently, the numerical calculations
require powerful computing systems. To enable an imple-
mentation on low cost and energy efficient microcontrollers,
more computational efficient thermal cable models are nec-
essary.
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Electrical signal propagation has been intensively inves-
tigated during the last decades and many powerful methods
have been developed based on transmission line (TL) the-
ory for a conductor pair or multiconductor transmission line
(MTL) theory for many conductors. The research is still go-
ing on.

In this contribution, the adaption of methods from the elec-
trical TL theory to the thermal domain is investigated. In
Sect. 2, the state of the art concerning thermal cable models is
briefly presented followed by an introduction to the electrical
TL theory in Sect. 3. In Sect. 4, similarities and differences
between electrical and thermal effects on cables are exam-
ined. The potential for the adaption of methods known from
the electrical TL theory to describe thermal effects on cables
is shown in Sect. 5 using an example: for an unshielded sin-
gle cable, two methods based on known electrical methods
are validated using a numerical reference solution and mea-
surement results.

2 Thermal cable models

In cables, all three well known heat transport mechanisms are
important: in the cable itself, mainly heat conduction domi-
nates, described by Fourier’s law. The coupling to the envi-
ronment is dominated by radiation and convection. Consid-
ering all three effects, an inhomogeneous nonlinear partial
differential equation or even a system of those equations is
necessary and general analytical solutions are hard to find.

For thermal investigations on homogenous cylindrical ca-
bles, two major directions for the heat flow are distinguished:
the axial direction along the cable and the radial direction
transversal to the axial direction. Often, the heat flow in the
radial direction is considered as dominant, which is a valid
assumption for long cables without relevant boundary ef-
fects. For example, in Hoffer (1978) and Ilgevicius (2004)
only the radial heat flow is considered. In many practical ap-
plications, cable contacts heat up or cool the cable. Espe-
cially for short cables, this highly influences the cable tem-
perature close to the contacts and the axial heat flow cannot
be neglected.

Often, numerical methods like FEM are used as e.g. in Fu
et al. (2018) and He et al. (2013). In those methods, the 3D
geometry of the cable structure is discretized and the corre-
sponding equations are solved. Those approaches cause mas-
sive calculation effort, and, therefore, take a long time. Faster
solutions can be found for rotational-symmetric configura-
tions, when just a 2D plane of the complete structure needs
to be discretized. Also, calculating only the radial or the sta-
tionary temperature distribution (Dai et al., 2014; Loos et al.,
2014; Sedaghat et al., 2018) reduces the numerical calcula-
tion effort, as dependencies in the partial differential equa-
tion vanish and a lower number of elements needs to be taken
into account. As in many practical cases, the transient tem-
perature development is searched, these easier stationary so-

lutions often cannot be applied. Contrary to numerical cal-
culations analytical methods can provide solutions in short
time, but then restrictions for the environmental conditions
and simplifications are necessary.

Other approaches model the cable configuration as a ther-
mal network. Like in the electrical domain equivalent cir-
cuits are used for modelling. Holyk et al. (2014), Lauria et
al. (2018), Lei et al. (2010), Olsen et al. (2013), and Zhan
et al. (2019) considered only the radial heat flow. If axial
heat flow is needed, stationary solutions are well known, for
example in Rickman and Iannello (2016). Approaches that
model the transient axial heat flow are rarely presented. One
example is given by Önal and Frei (2018) where cascaded
network models are used, that need numerical techniques for
computation.

3 Electrical cable models

Electrical cable models were examined for more than one
hundred years by now (Paul, 2008). Beginning with sim-
ple single cables, more and more complex cable arrange-
ments were evaluated, and the multiconductor transmission-
line (MTL) theory was established (e.g. Achar and Nakhla,
2001; Antonini et al., 2013; Paul, 2008). The basic model
for an MTL arrangement is shortly presented here. An in-
finitesimally short cable segment can be modelled using an
equivalent circuit (Paul, 2008). From this equivalent circuit,
using Kirchhoff’s laws, a system of coupled partial differen-
tial equations is derived:

∂

∂z
U(z, t)=−R′I (z, t)−L′

∂

∂t
I (z, t),

∂

∂z
I (z, t)=−G′U(z, t)−C′

∂

∂t
U(z, t). (1)

Substituting one equation into the other leads to the set of
hyperbolic partial differential equations just for the voltages:

∂2

∂z2 U(z, t)−L′C′
∂2

∂t2
U(z, t)−

(
L′G′+R′C′

) ∂
∂t

U(z, t)

−R′G′
∂2

∂z2 U(z, t)= 0. (2)

Its solution, the vector U(z, t), describes the development of
the voltages along the cables depending on the time t and the
spatial coordinate z, I (z, t) are the corresponding currents.
The matrices R′, L′, G′ and C′ are built up from the equiva-
lent circuit.

A huge number of solution approaches of this general
problem was developed in the past (see for example Achar
and Nakhla, 2001; Antonini et al., 2013; Paul, 2008). Several
numerical solutions as finite differences in the time domain
(Orlandi and Paul, 1996) or recursive algorithms (Lin and
Kuh, 1992) but also many analytical solutions exist for differ-
ent application scenarios. Often, transformations for example
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into the Laplace domain (Al-Zubaidi R-Smith and Brancík,
2016; Nuricumbo-Guillén et al., 2018) are applied to find so-
lutions. To uncouple the differential equations, the similar-
ity transform (Lombardi et al., 2018) can be used. As often
very complex terms appear, methods for model order reduc-
tion (Spina et al., 2014) are applied to reduce the complex-
ity of the resulting formulations and enable further calcula-
tion steps. From (explicit) solutions for special cases as ho-
mogenous lossless lines to generalizations as for example the
inclusion of nonlinear cable parameters (Wang et al., 2019;
Zeng and Wong, 1996), a wide variety of methods was ex-
plored in the past. The research is still going on. Currently,
for example inhomogenous or buckling lines and statistical
laying conditions are under investigation (see exemplarily
Kasper and Vick, 2019; Sekine et al., 2020).

4 Comparison between the electrical and thermal
domain

As in the electrical transmission-line (TL) theory many meth-
ods were developed over the years, it is of scientific interest
whether the methods can be transferred to thermal problems.
This is discussed in this section.

4.1 The thermoelectric equivalent

Electromagnetic effects are based on the behavior of electri-
cal charges q. Likely charges reject each other. On the ele-
mental level, electrical charges are discretized as multiples
of the elementary charge. As this elementary charge is very
small, on a macro level, this discretization can be neglected.
Then, a continuous charge density ρ can be used to describe
the charge distribution quite exactly. Without external exci-
tations, this charge density tends to a uniform distribution
in space resulting in a constant volume charge density. An
equivalent behavior can also be found in the thermal domain:
a temperature difference leads to balancing effects resulting
in a uniform temperature distribution. Elementarily, the tem-
perature of a medium is characterized by the middle veloc-
ity respectively the kinetic energy of the molecules. Analo-
gously to the electrical volume charge density, that tends to a
uniform distribution, in the thermal domain, an energy den-
sity ρth is given. Therefore, thermal “charges” qth are energy
portions. As there is no negative energy, negative thermal
charges or charge densities do not exist. This is one elemental
difference between electrical and thermal charges. Integrat-
ing over the charge density gives the charge for a specific
volume in both domains.

The electrical current I is the charge quantity, that passes
a given cross section per time. It can be characterized as ef-
fect or through quantity. Equivalently, the heat flow P is the
energy that passes a given cross section per time.

In the electrical domain, the electrical scalar potential ϕ
and the electrical voltage U are related closely. The poten-

tial is the more physical quantity. Physically, a potential de-
scribes the ability of a conservative force field to perform
work. For the electrical scalar potential this is about shift-
ing charges. The electrical potential is a characteristic of the
space itself and can be defined for each point even if there
is no matter or charge at the specific point. In the thermal
domain, the equivalent quantity is the temperature T . As a
temperature always needs matter to be defined, here, elec-
trical and thermal domain differ. The electrical voltage be-
tween two points in space is the difference between the po-
tentials of those two points. This voltage can be character-
ized as cause or across quantity. Therefore, a constant offset
does not change the physical behavior, so an offset can be
chosen arbitrarily. A fixed reference potential can be defined.
All other potentials then refer to this reference. In the thermal
domain, equivalently, a reference temperature can be chosen.
As the lowest physically possible temperature is the absolute
zero point, temperatures below this point cannot appear. Un-
like, the electrical scalar potential can have any value.

Energy minimization is a physical basic principle. That is
why electrons tend to move towards points with lower poten-
tial. Different potentials lead to a voltage between two points
and therefore cause a force on charged particles, that leads
to a current between these two points, as long as a path with
finite resistance exists. The most popular case is a current
through a conductor. The ratio between the voltage and the
current describes the resistance that the medium sets against
this charge movement. Analogously, heat conduction can be
modelled: along a medium, thermal charges (energy) move
from places with higher potential (temperature) to places
with lower potential. Again, the resistance is the ratio be-
tween the temperature difference and the heat flow.

Even the calculation formulas for the resistances for spe-
cial geometries are quite similar: for a cylinder of length l
and cross section A, the axial electrical resistance R and the
corresponding thermal resistance Rth are calculated via

R =
l

σA
, Rth =

l

λA
(3)

with the electrical (σ ) respectively thermal (λ) conductivity.
Also, the radial resistances for a cylindrical shell with the
inner radius r1 respectively outer radius r2 are

R =
ln
(
r2
r1

)
2πσ l

, Rth =
ln
(
r2
r1

)
2πλl

. (4)

Additionally, in the thermal domain, the resistance for a sur-
face A with the heat transfer coefficient α is calculated via

Rth =
1
αA

. (5)

The current density J in the electrical domain respectively q̇

in the thermal domain is calculated via a multiplication of the
gradient of the potential (temperature) with the conductivity.
Then, the current through a given cross section is the integral
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over the current density. From the charge conservation, the
continuity equation follows, that relates the electrical charge
density and the current density. Analogously, in the thermal
domain, energy conservation leads to an equivalent formula-
tion.

Due to energy conservation, the energy imprinted on a
structure splits up in a part that is preserved in the volume and
heats up the structure and a part that leaves the structure via
its surface. For the heat storage in the medium, capacitances
are necessary. In the electrical domain, capacitances are used
to characterize the capability of storing charges. Generally,
this describes a property between two conductive structures.
The charge +Q is applied to the one structure, the charge
−Q to the other one. The capacitance C then describes the
connection to the voltage between both structures.

C =
Q

U
(6)

To find the charge Q, an integration over a surface that fully
includes one of the structures is necessary. For the voltage U ,
an integration along a path between the two structures needs
to be calculated. So, this property depends on the material
between the structures and the geometry. The most typical
example for an electrical capacitance is a parallel-plate ca-
pacitor, which is a structure of two electrically conducting
parallel structures that are insulated from each other. In the
thermal domain, there is no equivalent to that. Here, capac-
itances fulfil a different task. Generally, again, the storage
capability of energy (corresponding to the electrical charge)
is described. In the thermal domain, a single structure is suf-
ficient to define that property. The thermal capacitance deals
with the question how much energy needs to be put into a
structure to generate a defined temperature increase. As the
temperature is measured relatively to the fixed reference tem-
perature, the capacitance refers to this reference as well. The
thermal capacitance Cth of a structure is a property of a sin-
gle body, that depends on its material and volume, but not
on the geometry. For the calculation, the specific heat capac-
ity cm respectively the volumetric heat capacity cV is multi-
plied with the massm respectively volume V of the observed
structure:

Cth = cV V = cmm. (7)

A thermal capacitance always refers to the reference and can-
not be placed between two structures (Kipp, 2008). Capac-
itances are used to calculate the temperature development
along time:

T (t)=
1
Cth

t∫
0

P dτ + T0. (8)

There is no thermal equivalent to the electrical inductivity.
An overview over the presented equivalences is given in Ta-
ble 1.

Figure 2. Equivalent circuit for a cable segment of a single cable.

4.2 Derivation of thermal equivalent circuits

Equivalent circuits can generally be used to describe systems
based on conservation laws. So, based on the equivalences
between the electrical and thermal domain, thermal equiv-
alent circuits can be derived to describe thermal effects on
different structures analogously to the electrical version. In
Fig. 2, this is shown exemplarily for a segment of length l of
an infinitely long homogeneous single wire with insulation.

The current I flows through the conductor. The corre-
sponding losses heat up the cable and the heat power Pe is
modelled by a heat source. As for typical conductor and insu-
lation materials, the thermal conductance of the insulation is
much lower than the conductor’s one, the conductor is mod-
elled as an area of constant temperature and the radial heat
flow through the conductor is neglected (Wang et al., 2019).
The power Pa leaves the system via the surface of the cable.
The first law of thermodynamics states

dUin = δQ+ δW (9)

where Uin is the inner energy, Q is the heat and W the work.
In this case, no work is done at the system, which leads to
δW = 0. Then, dUin = δQ follows. The time derivation of
this expression leads to

dUin

dt
= Q̇= Pe−Pa. (10)

Assuming that the inner energy just depends on the temper-
ature, the heat capacitance for a constant volume V and a
constant particle number N is inserted:

Cth =
dUin

dT
⇒ CthdT = dUin⇒ Cth

dT
dt
= Pe−Pa. (11)

This expression behaves as a current through a capacitor. As
can be seen, the heat, that is induced in the conductor, splits
up into two parts: One part heats up the cable and is there-
fore stored in the material. The capacitance Cth models this
effect. The other part Pa passes the insulation layer (heat con-
duction,Rth,λ) and leaves the cable at its surface via radiation
and convection (Rth,α). The reference potential (temperature)
is Tref. All voltages (temperature differences) refer to this ref-
erence. To describe the heat conduction through the insula-
tion layer, Fourier’s law is evaluated with the heat conductiv-
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Table 1. Overview over equivalences between the electrical and thermal domain.

electrical thermal

density charge density ρ = dq
dV energy density ρth =

dqth
dV

charge charge q =
∫
V ρdV energy qth =

∫
V ρthdV

current charges per time I = dq
dt energy per time P = dqth

dt
potential electrical scalar potential ϕ temperature T
voltage U =1ϕ 1T

resistance R = U
I

Rth =
1T
P

current density J =−grad(ϕ)σ ⇒ I =
∫
AJdA q̇ =−grad(T )λ⇒ P =

∫
Aq̇dA

conductivity σ λ

continuity equation charge conservation: div(J )=− ∂ρ
∂t

energy conservation: div(q̇)=− ∂ρth
∂t

capacitance I = CU̇ ⇒ C =
Q
U

P = Cth ˙(1T )⇒ Cth =
qth
1T

ity λ of the material:

Pa=−λA(r)
dT
dr
=−λ · 2πrL ·

dT
dr

⇒ T (r1)− T (r2)=

r2∫
r1

Pa

2πrLλ
dr =

Pa

2πLλ
ln
(
r2

r1

)
⇔ Tc− Ts = Pa ·Rth,λ. (12)

Here, T is the general temperature, whereas Tc is the temper-
ature of the inner conductor and Ts is the conductor surface
temperature. Analogously, radiation and convection are de-
scribed using another thermal resistance:

Ts− Te = Pa ·Rth,α. (13)

The environmental air has the temperature Te, which is mod-
elled by a temperature source. The reference temperature can
still be chosen arbitrarily. For example, the environmental
temperature can be used. Then, the temperature source for
the environmental temperature is not necessary. Although
it might look like heat would flow back into the conductor
through the reference potential, this does not happen phys-
ically as there is no physically equivalent structure for the
reference potential.

So, from the physical effects, directly the corresponding
equivalent circuit can be built up. This approach can be trans-
ferred to other cable arrangements: for each radial layer, gen-
erally, a capacitance and a resistance are used. For typical
conductors, the radial thermal resistance can be neglected
in comparison to the thermal resistance of insulation layers.
Heat sources model the imprinted heat flow and resistances
are used to describe the transition to the environment or other
cables. Fixed temperatures as for example the environmental
temperatures are modelled via ideal temperature sources.

4.3 Comparison between electrical and thermal
equivalent circuits

For an infinitesimally short cable segment (length dz), the
equivalent circuit presented in Fig. 2 changes to an equiv-

alent circuit with per unit length parameters (see Fig. 3a)
just like in the electrical domain. By now, only radial effects
were taken into account. The axial heat flow is considered
by adding an axial resistance R′th (see Fig. 3b). By chang-
ing the temperature source to an equivalent heat source and
rearranging the equivalent circuit, Fig. 3c results. The corre-
sponding electrical equivalent circuit is given in Fig. 3d. As
can be seen, those two circuits are very similar: By setting the
inductance to L′ = 0 and the reference resistance to R′0 = 0
in the electrical circuit and inserting an extra current source,
the thermal circuit is derived from the electrical one. Sources
like this one also appear in the electrical domain, if external
field excitations exist (Antonini et al., 2013; Paul, 2008). So
only very small changes are necessary.

In Fig. 4a, the electrical equivalent circuit for an infinitesi-
mally short segment of (n+1) lines oriented in z-direction is
presented (Paul, 2008). One line is chosen as reference con-
ductor. In the thermal domain, the corresponding equivalent
circuit for a multiconductor structure can be derived based
on the circuit for a single cable. The coupling between the
different cables is modelled via additional conductances. In
contrast to the electrical domain, capacitive coupling does
not appear, as thermal capacitances always refer to the refer-
ence temperature. In Fig. 4b, the thermal equivalent circuit is
presented. Again, to derive the thermal circuit from the elec-
trical one, only minor changes are necessary as both circuits
are very similar to each other. That is why the application
of electrical methods to the thermal domain is a promising
approach.

In the electrical domain, often, homogenous and lossless
environments are assumed. These assumptions cannot be
transferred to the thermal domain. That is why some ap-
proaches from the electrical domain cannot be used for ther-
mal investigations. Also, in the electrical domain, one con-
ductor is chosen as reference conductor. In the thermal do-
main, there is no physical reference conductor. That is why
in the electrical domain, kind of one additional degree of
freedom exists for symmetrical configurations. Nevertheless,
as shown before, the equivalent circuits in both domains are
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Figure 3. Equivalent circuits for infinitesimally short cable segments of a single cable. (a) Thermal radial model. (b) Thermal axial model.
(c) Reduced version of the thermal axial model. (d) Electrical model.

Figure 4. (a) Electrical and (b) thermal equivalent circuit for a multiconductor transmission line segment of infinitesimal length.

very similar, which enables the usage of methods from the
electrical domain for thermal problems.

4.4 Differential equations

From the equivalent circuits, partial differential equations for
the conductor temperature Tc and the heat flow P can be de-
rived via Kirchhoff’s laws equivalently to the electrical do-
main. For the single line from Fig. 3c, the coupled problem
is formulated as follows:

∂

∂z
Tc(z, t)=−R

′

thP(z, t),

∂

∂z
P (z, t)=−C′th

∂

∂t
Tc(z, t)−P

′
e −G

′

th (Tc(z, t)− Te) . (14)

Those equations are quite similar to the corresponding elec-
trical equations. Substituting one equation into the other
leads to the parabolic partial differential equation just for the
temperature:

1
R′th

∂2

∂z2 Tc(z, t)−C
′

th
∂

∂t
Tc(z, t)−G

′

thTc(z, t)

= P ′e −G
′

thTe. (15)

If not only a single cable, but a multiconductor structure ap-
pears as presented in Fig. 4, the scalar expressions need to

be extended to matrix-vector-expressions as in the electrical
domain:

∂

∂z
T c(z, t)=−R′thP (z, t),

∂

∂z
P (z, t)=−C′th

∂

∂t
T c(z, t)−P ′e−G′th (T c(z, t)−T e) . (16)

The corresponding system just for the conductor tempera-
tures is

∂2

∂z2 T c(z, t)−R′thC′th
∂

∂t
T c(z, t)−R′thG′thT c(z, t)

= R′th
(
P ′e−G′thT e

)
. (17)

Comparing this expression with the corresponding expres-
sion in the electrical domain, see Eq. (2), shows the following
differences. In the electrical domain, hyperbolic equations
describe an oscillating system. The second time derivative
corresponds to an oscillating behavior, the first time deriva-
tive describes an attenuation. Unlike, in the thermal domain,
there is no inductance equivalent. Therefore, wave phenom-
ena as reflections, standing waves and resonances do not ap-
pear in the thermal domain.

As there is no capacitive coupling between the different
conductors, the matrix C′th is diagonal. Contrarily, in general,
in the corresponding electrical matrix C′, also non-diagonal
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elements appear. Therefore, the thermal matrix is less com-
plicated than the electrical one in this case and can be re-
garded as simpler special case of the electrical general case.

5 Application example and first results

In this chapter, exemplary methods for thermal temperature
calculation based on the electrical TL theory are summed
up and some results are given. The calculation results are
compared to the numerical temperature distribution calcu-
lated with the FEM software COMSOL Multiphysics (COM-
SOL Multiphysics, 2021) for the axial temperature distribu-
tion and measurement data for the transient temperature de-
velopment for a long cable.

5.1 Exemplary methods for temperature calculation
based on electrical methods

In this section, two approaches for the temperature calcula-
tion are shortly presented. Both of them are based on meth-
ods known from the electrical domain.

5.1.1 Analytical solutions of the differential equation

The differential equation for a single cable can be solved an-
alytically. This approach was earlier presented in Henke and
Frei (2020). If only the stationary axial solution should be
calculated, the time dependency and therefore also the time
derivative vanishes, and the solution of the differential equa-
tion can directly be calculated in the time domain. Also, for
the transient radial solution, the axial heat flow is neglected
and therefore, the z-derivative vanishes. The reduced differ-
ential equation can be solved in the time domain. When both,
axial and transient temperature developments have to be con-
sidered, the Laplace transform can be used to find a solution
for special conditions as a constant current through the ca-
ble that is switched on at the beginning of the observation
time, a constant cable temperature at the beginning and con-
stant cable end temperatures. The partial differential equation
with the boundary conditions is transformed into the Laplace
domain. There, a solution is found. Nevertheless, the expres-
sion cannot be transformed back into the time domain analyt-
ically. That is why an approximation is necessary that enables
an analytical transformation (Henke and Frei, 2020). In the
thermal domain, the heat source P ′e depends on the conductor
temperature of the cable and the parameter G′th depends on
its surface temperature. That is why a self-consistent nonlin-
ear problem needs to be solved here. An iterative approach
that converges very fast is proposed to include those depen-
dencies in Henke and Frei (2020).

5.1.2 Cascading of equivalent circuits

In the electrical domain, equivalent circuits for short ca-
ble segments can be cascaded to model the axial develop-

ment. This approach can equivalently be used in the ther-
mal domain. At the cable ends, sources are used to model
a fixed temperature. As for example presented in Önal and
Frei (2018), the resulting complete equivalent circuit is im-
plemented and solved numerically in MATLAB/Simscape.

5.2 Axial temperature distribution

In this chapter, for an exemplary setup, the two methods pre-
sented above are validated with the FEM software COMSOL
Multiphysics (COMSOL Multiphysics, 2021). Here, just a
single conductor cable is evaluated, so the problem is rota-
tionally symmetrical. That is why only a two-dimensional
discretization is necessary in COMSOL.

A PVC-insulated 2.5 mm2 copper cable with the length
0.7 m has the temperature 25 ◦C at the time t = 0 s. At this
point, a current of 40 A is switched on. It is assumed that the
one end of the cable is connected to the ambient temperature
of 25 ◦C, whereas the other end is connected to a warmer re-
gion and therefore has the temperature 85 ◦C. For this setup,
the axial temperature distribution along the cable is calcu-
lated for the three points in time t1 = 50 s, t2 = 200 s and
t3 = 1000 s. The calculation results are presented in Fig. 5.
As can be seen, both, the analytical solution and the Sim-
scape implementation of the equivalent circuit generally fit
well with the COMSOL solution. In the transient area (t1 and
t2), deviations up to 2.5 K appear between the analytical solu-
tion and the solutions from COMSOL and Simscape. For the
stationary case, all three solutions are close to each other es-
pecially in the middle of the cable. The boundary conditions
are fulfilled for both solutions very precisely (deviation lower
than 0.001 K). Generally, the proposed approaches are able to
model the transient axial temperature distribution with a high
accuracy, so the approximation in the analytical solution does
not cause relevant deviations in this application case.

5.3 Transient temperature development

In the next step, the transient temperature development for a
long PVC insulated 2.5 mm2-copper cable is measured in the
middle of the cable via measuring the cable resistance. In this
case, the environmental temperature is 21.3 ◦C. The results
are used to validate both of the above presented approaches.
At the beginning of the measurement, a current of 25 A is
switched on. After 400 s, the current is increased to 35 A. The
measurement results are compared to the calculated temper-
atures using the analytical solution and the Simscape imple-
mentation (see Fig. 6). During the first time interval between
0 and 400 s, where the current is 25 A, the measured and cal-
culated temperature are close together. At the end of the in-
terval, a temperature of 50 ◦C is reached. In the second time
interval between 400 and 900 s, the calculated temperatures
for the stationary case (end of the interval) are a little higher
than the measured temperatures (less than 3 K deviation). As
both calculated solutions are very close to each other it can be
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Figure 5. Temperature calculation results along the cable for the times (a) t1 = 50 s, (b) t2 = 200 s and (c) t3 = 1000 s.

Figure 6. Comparison between measurement and temperature cal-
culation results in the middle of the cable along time.

assumed that parasitic effects that were not modelled in the
basic equivalent circuit influenced the measurement results.
Nevertheless, the good accordance shows that the presented
approaches based on the electrical TL theory can be used to
model the real physical behavior of the cable.

6 Summary

In this contribution, the potentials of applying methods from
the electrical TL theory to thermal problems were discussed.
Those two domains were compared, and essential physical
backgrounds were presented. For two exemplary methods
from the electrical domain, it was shown that they are ap-
plicable to thermal problems as well. In further research,
detailed discussions for additional methods and more com-
plex application examples including the potentials and limits
of their applicability in the thermal domain need to be per-
formed.
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