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Abstract—Information on field emissions is required in 

many applications. Typically, antennas are used for the 

measurement of the far-field. Antenna measurements suffer 

from several problems, e.g. the need of large anechoic chambers. 

Near-field measurements/scans might become an attractive 

alternative in the future. The far-field can finally be calculated 

from near-field measurement data. For an accurate calculation, 

phase and amplitude distributions of the near-fields are needed 

for all considered frequencies. As phase measurement can be 

very troublesome, the reconstruction of the phase from phase-

less measurement data is highly attractive. In this paper, a 

method is presented to find the EMI of PCB traces or similar 

structures with phase-less near-field measurements. In this 

method, knowledge of the geometry of potential radiating is 

applied. From this knowledge, boundary conditions can be 

found for phase estimation. The method is shown in detail and 

the benefits are discussed on result of reconstructed current 

distributions and estimations of the far-field.  
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I. INTRODUCTION 

The usage of near-field scan data is highly attractive for 
EMI-analysis due to several reasons [1] – [3]. Large anechoic 
chambers are not needed for such analysis. The far-field can 
be computed or detailed information on the radiation sources 
can be obtained. Radiation sources like printed circuit boards 
(PCBs) can be analyzed. From the near-field data, radiating 
structures (mostly conducting traces) can be identified and 
suitable design changes can be found. This method is 
especially advantageous during hardware development, since 
potential EMC issues can be identified and resolved early.  

In this work, a field source model of a radiating known 
geometrical structure is developed from near-field scan data 
and is used to identify the radiating structure’s electrical 
parameters. The intention of this approach is the estimation of 
the radiated emissions from a PCB and isolating the root 
cause.  

Different field source models can be used. One approach 
is the usage of a set of dipoles, arranged in a regular grid, to 
represent the radiation of PCBs, e.g. [3] – [6]. Depending on 
the scan data quality, and the complexity of the investigated 
structure, promising results could be achieved [3]. However, 
finding the root cause of an EMI problem is difficult, as the 
dipole sources cannot be assigned easily directly to a radiating 
PCB trace.  

Another approach to design a field source model is based 
on geometry information. As presented in [1], [7], [8], the 
dipoles are arranged according to the possible current paths of 
an investigated structure (e.g. PCB). In contrast to the 

approach using a regular grid arrangement, the parameterized 
models may include additional information like the current 
distribution. Therefore, methods using this model approach 
are often referred to as current reconstruction methods.  

If accurate near-field data with phase information is 
available, the parametrization of the field source model can be 
performed directly by solving an inverse problem [6] – [8]. As 
shown, e.g. in [6] or [9], the measurement of the phase is 
troublesome. Therefore, reconstructing the phase from phase-
less measurement data is an attractive alternative. To do so, 
iterative algorithms can be used [4], [5]. Another approach is 
proposed in [10]. Using near-field data on two parallel planes, 
an iteration-free phase estimation can be found. In contrast to 
iterative algorithms, this approach has very high demands on 
the accuracy of a measurement in the distant plane.  

In this paper, a further elaborated current reconstruction 
method is presented. Only the information on the possible 
current paths has been used in previous approaches. In this 
work, additional information on the system is considered. This 
information includes on the one hand the behavior of 
termination circuits. On the other hand, an approach to define 
possible ranges of the investigated system’s quantities is 
presented. An iterative process is presented to parameterize 
the extended model based on phase-less near field data. No 
special requirements on the arrangement of the measurement 
points need to be considered. In this work, the near-field data 
is given in an equally spaced grid on a single plane. Analyzing 
an exemplary structure, the benefit of considering additional 
information on the system is discussed. Here, results for 
reconstructed current distribution and estimations of the far-
field are investigated.  

In II and III, the basic model approach and the iterative 
process to evaluate phase-less near-field data are presented. 
Next In IV, the integration of additional conditions is shown. 
The derived method is applied on simulation data in V.  
A conclusion and an outlook close the work. 

II. INVERSE PROBLEM FOR THE RECONSTRUCTION OF THE 

CURRENT DISTRIBUTION 

One essential part of the inverse problem is the description 
of the relation between the current distribution and the near-
field. A set of electric dipoles can be used as flexible model to 
map a measured field. As shown already in [8] a conductor-
system on a PCB can be subdivided in 𝑁 short segments, to 
each segment a dipole with current 𝐼n  can be assigned (see 
Fig. 1). The magnetic field of every dipole can be calculated 
easily. Hence, the current 𝐼n  of the 𝑛th segment generates a 
magnetic field 𝐇m at the 𝑚th observation point. This can be 
formulated in Cartesian components: 



[

𝐻x,m
𝐻𝑦,m
𝐻z,m

] = [

𝜓x,nm
𝜓y,nm
𝜓z,nm

] ⋅ 𝐼n ⇔ 𝐇m = 𝛙nm ⋅ 𝐼n (1) 

The components of 𝛙nm are the magnetic field function 
for an electric dipole. The lengths of the 𝑛th segment in the 
different spatial directions are included as dipole lengths [8], 
[11]. According to this description, the superposition of the 
magnetic fields for all 𝑀 observation points of all 𝑁 segment 
currents is 

[
𝐇1
⋮
𝐇M

] = [
𝛙11 ⋯ 𝛙1N
⋮ ⋱ ⋮

𝛙M1 ⋯ 𝛙MN

 ] ⋅ [
𝐼1
⋮
𝐼N

] ⇔ 𝐇 = 𝚿IH ⋅ 𝐈 . (2) 

This formula gives the relation between the magnetic near-
field and the generating current distribution. Formulas to 
calculate the far-field of a known current distribution can be 
formulated similarly.  

In (2), an inverse formulation for the current distribution 
is given if sufficient magnetic field data points are given. To 
reduce the complexity, segment currents on short sections of 
the conductors can assumed to be constant. For longer sections 
transmission line theory can be used, with incident and 
reflected current waves. The currents 𝐼p,k, 𝐼p+1,k, ⋯ , 𝐼q,k of the 

𝑘th section can be fixed. If a section is short, e.g. section 𝑘1 in 
Fig. 1, the assignment 

[

𝐼p,k
⋮
𝐼q,k

] = [
1
⋮
1
] ⋅ 𝐼c,k (3) 

with the constant current 𝐼c,k can be used. For longer sections, 

like section 𝑘2 in Fig. 1, using the propagation constant 𝛾k of 

the 𝑘thsection, the current distribution can be represented with 

[

𝐼p,k
⋮
𝐼q,k

] = [
e−𝛾k𝑑p,k −e𝛾k𝑑p,k

⋮ ⋮
e−𝛾k𝑑q,k −e𝛾k𝑑q,k

] ⋅ [
𝐼i,k
𝐼r,k
] . (4) 

In this equation, the position 𝑑n,k  of the 𝑛 th segment is 

chosen on the center of the segment on a coordinate system 
oriented in section direction. Here, the positions 𝑑S,k and 𝑑E,k 

denote the start and end positions of the 𝑘th section. Finally, 
merging the conditions given in (3) and (4) in the matrix 𝚿TL, 
the inverse problem of (2) is represented in 

𝐇 = 𝚿IH ⋅ 𝚿TL ⋅ 𝐈S (5) 

with the current vector 

𝐈S = [𝐼i,1 𝐼r,1 ⋯ 𝐼i,P 𝐼r,P 𝐼c,1 ⋯ 𝐼c,Q]T . (6) 

III. EVALUATING PHASE-LESS NEAR-FIELD DATA BY 

ITERATIVE SOLUTION OF THE INVERSE PROBLEM 

In the inverse problem of (2) respectively (5) both, 
magnetic field and the generating current values, are complex 
values. If the magnetic field is known by magnitude and 

phase, the least squares solution �̂�S of 

�̂�S = arg min
𝐈S

‖𝚿IH ⋅ 𝚿TL ⋅ 𝐈S − 𝐇‖2   (7) 

describes the requested current distribution. However, if only 
magnitude of field distribution is given, the single evaluation 
of (7) does not generally lead to a correct solution. To solve 
this problem, an iterative algorithm is used, that corresponds 

with the basic idea of the methods presented in [4] and [5]. 
The algorithm is described in the following.  

First, an arbitrary phase 𝛗(0) is assumed for the measured 

magnetic field 𝐇Magn  that is only given by its magnitude. 
Thus, the magnetic field at 𝑀 field points is described by  

𝐇Magn ∈ ℝ3M×1 (8) 

and the phases are for the moment presented as 

𝛗(0) = [[𝜑x,m
(0) 𝜑y,m

(0) 𝜑z,m
(0) ]

T
]
k ∈ M×1

 . (9) 

The resulting initial near-field is  

𝐇(0) = 𝐇Magn ∘ ej𝛗
(0)

 

⇔

[
 
 
 𝐻x,m

(0)

𝐻y,m
(0)

𝐻z,m
(0)
]
 
 
 
=

[
 
 
 
 𝐻x,m

Magn
⋅ ej𝜑x,m

(0)

𝐻y,m
Magn

⋅ ej𝜑y,m
(0)

𝐻z,m
Magn

⋅ ej𝜑z,m
(0)

]
 
 
 
 

  ∀ 𝑚 ∈ ℕM
∗   . 

(10) 

Using this data, a current distribution can be determined 
by the least squares’ solution of 

�̂�S
(i) = arg min

𝐈S

‖𝚿IH ⋅ 𝚿TL ⋅ 𝐈S − 𝐇
(i−1)‖

2
  ∀ 𝑖 ∈ ℕ∗ . (11) 

According to (5), the estimated new values �̂�S
(i)

 of the 𝑖th 
iteration step give the new magnetic field approximation 

�̂�(i) = 𝚿IH ⋅ 𝚿TL ⋅ �̂�S
(i) . (12) 

The phase information 

𝛗(i) = arg �̂�(i)  (13) 

of this model is combined with the basic information about the 
magnitude of the magnetic field: 

𝐇(i) = 𝐇Magn ∘ ej𝛗
(i)
  (14) 

Using this resulting field data, a new current vector �̂�S
(i+1)

 can 

found solving (11). 

For starting the iteration process, an initial guess for the 

phase distribution 𝛗(0)  (9) must be given. Assuming 
convergence of the presented algorithm, the number of 
iteration steps required to obtain a solution depends on the 

 
Fig. 1. Example field source model of the conductor system on a PCB. 
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initial guess of the phase distribution. In addition, the iterative 
algorithm is able to converge to different solutions and the 
found solutions depend on the initial value. Investigations 
with different sets of initial values have shown that random 
numbers give good results. Here, further research is needed. 

For 𝛗(0) an initial random phase distribution [0, 2𝜋] is used: 

𝜑{x,y,z},k
(0) ∼ 𝒰(0,2𝜋) ∀ 𝑘 ∈ ℕM

∗  (15) 

To terminate the iteration process, two criterions can be 
applied. The first criterion is based on the solution of the 
inverse problem. Here, the mean value of the relative 

deviation of the solution �̂�S from two successive iteration steps 
is used: 

𝜎rel,sol
(i) =

1

𝐾
⋅∑ |

𝐼k
(𝑖) − 𝐼k

(𝑖−1)

𝐼k
(𝑖)

|

𝐾

𝑘=1

, �̂�S
(i) = [𝐼k

(𝑖)]
k ∈ K×1

 (16) 

The second criterion is based on the deviation of the phase 
of the reconstructed magnetic field. Considering the 
periodicity of the phase information, the criterion can be 
formulated as 

𝜎phs
(i) =

1

3𝑀
 ∑ ∑ |e

𝑗 arg(�̂�
dir,m
(i)

)
−e

𝑗 arg(�̂�
dir,m
(i−1)

)
|

dir={x,y,z}

𝑀

𝑚=1

 . (17) 

The relative variation of the solution is described by both 
criterions. Therefore, they can be applied to formulate an 
effective termination condition. 

IV. IMPLEMENTATION OF NETWORK EQUATIONS IN THE 

INVERSE PROBLEM 

The solution of the least-square problem in (7) or (11) 
leads generally to a solution, the residuum of (5) is minimized, 
but it might not reflect the physical reality of the measured 
system. In this section, the formulation of additional boundary 
conditions is introduced to improve the solution’s quality.  

A. Formulation of Network Equations in the Inverse 

Problem 

First, the investigated conductor system forms an electric 
network, Kirchhoff’s circuit laws must be valid. To formulate 
these laws as additional conditions for the problem, the 
incident and reflected waves of the transmission-line 
equations in (6) must be represented as currents and voltages 
at the ends of the conductors. Thus, the voltages and currents 
at the start and end of the 𝑘th conductor are given by 

[
 
 
 
𝑉S,k
𝐼S,k
𝑉E,k
𝐼E,k ]
 
 
 

=

[
 
 
 
𝑍0,ke

−𝛾k𝑑S,k 𝑍0,ke
𝛾k𝑑S,k

e−𝛾k𝑑S,k −e𝛾k𝑑S,k

𝑍0,ke
−𝛾k𝑑E,k 𝑍0,ke

𝛾k𝑑E,k

e−𝛾k𝑑E,k −e𝛾k𝑑E,k ]
 
 
 

⏟                
=𝐊k

⋅ [
𝐼i,k
𝐼r,k
] . (18) 

Here, 𝑍0,k is the wave impedance of each conductor. Using 

the transformation matrices 𝐊k for all conductors lead to the 
following network values: 

[
 
 
 
 

[
 
 
 
𝑉S,1
𝐼S,1
𝑉E,1
𝐼E,1 ]
 
 
 

  

T

⋯ 

[
 
 
 
𝑉S,P
𝐼S,P
𝑉E,P
𝐼E,P ]

 
 
 
T

[

𝐼c,1
⋮
𝐼c,Q

]

T

]
 
 
 
 
T

= [

𝐊1
⋱
𝐊P

𝐄

]

⏟        
=𝐊𝐓

[
 
 
 
 
 
 
 
 
𝐼i,1
𝐼r,1
⋮
𝐼i,P
𝐼r,P
𝐼c,1
⋮
𝐼c,Q]
 
 
 
 
 
 
 
 

 (19) 

Now, it is possible to formulate Kirchhoff’s circuit law. 
The approach is now explained further based on the 
configuration showed in Fig. 2, the corresponding relations 
are represented in the following equation:  

[

1

1 ZT,1

⋯ 1 0 −1 0
0 1 0 −1

⋯

−1

⋯] ⋅ 

[𝑉S,1 𝐼S,1 ⋯ 𝑉E,k 𝐼E,k 𝑉S,k+1 𝐼S,k+1 ⋯ 𝐼c,1 ⋯]T

= [0 0 0 𝑉T,1]T 

(20) 

The first row of the matrix in (20) represents the nodal rule 
at the presented vertical element and the first line. Similar to 
this, the nodal rule between line 𝑘 and 𝑘 + 1 is expressed in 
row 3. In addition, the continuity of the voltage at the end and 
start of the lines is formulated as equation in the second row. 
Row 4 represents a termination conditions by considering a 
Thévenin equivalent circuit. If the equivalent impedance and 
voltage source of the network is known, this information can 
be used as additional condition. 

B. Implementation of Conditions in the Inverse Problem 

Formulation 

There are many methods to solve a least-squares problem 
considering additional conditions. As the investigated 
problem here is based on complex numbers the inverse 
problem and the additional conditions have to be separated in 
real and imaginary part: 

𝚿 ⋅ 𝐈S = 𝐇, 𝚿 = 𝚿HI ⋅ 𝚿TL 

⇔ (𝚿Re + j𝚿Im) ⋅ (𝐈S,Re + j𝐈S,Im) = (𝐇Re + j𝐇Im) 
(21) 

Comparing real and imaginary parts of this equation, the 
problem can also be formulated with 

[
𝚿Re −𝚿Im
𝚿Im 𝚿Re

] ⋅ [
𝐈S,Re
𝐈S,Im

] = [
𝐇Re
𝐇Im

] . (22) 

To solve the resulting real least-square problem, an 
interior-point-convex algorithm is used [12]. Here, the 
additional conditions shown in (20) must also be formulated 
considering real and imaginary part. 

C. Consideration of Limits in the Inverse Problem 

The solution of the problem in the form of (22) with 
classical methods also allows the consideration of inequality 
conditions like 

𝐀Lim ⋅ 𝐱 ≤ 𝐛Lim, 
                 𝐀Lim ∈ ℝ

F×G , 𝐱 ∈ ℝF×1 , 𝐛Lim ∈ ℝ
G×1 , 

⇔ 𝐴Lim,i,1 𝑥i +⋯+ 𝐴Lim,i,F 𝑥F ≤ 𝑏i   ∀ 1 ≤ 𝑖 ≤ 𝐺 

(23) 

This option can be used to set limitations on unknown 
values. To introduce reasonable limits, the usage of the 
transformation matrix 𝐊T  represented in real and imaginary 
part like in (22) can be helpful. This way limit conditions (23) 

 
Fig. 2. Example conductor system 
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for currents and voltages in the investigated conductor system 
can be given.  

The most useful limitation on a value is the limitation of 
the norm respectively the magnitude, e.g. in the case of the 
voltage VT,i at the end of a line: 

|VT,i| ≲ VMax (24) 

Formulating linear conditions on the real and imaginary 
part of 𝑉T,i , following equations can be used to fulfill this 

requirement: 

[
 
 
 
 

⋮
1 −1 −1 1 1 −1 0 0

⋮
1 −1 1 −1 0 0 1 −1

⋮ ]
 
 
 
 
T

⋅

[
 
 
 
 

⋮
Re{𝑉T,i}

⋮
Im{𝑉T,i}

⋮ ]
 
 
 
 

≤ VMax ⋅ [√2 √2 √2 √2 1 1 1 1]
T 

(25) 

In Fig. 3, the set of possible values of 𝑉T,i  are shown. 

Having the form of an octagon, the set approximately fits to 
the demanded form of a circle.  

V. APPLICATION ON SIMULATION DATA 

In this chapter, a simulation setup is investigated with the 
presented methods. Afterward, the achieved results are 
discussed.  

A. Setup 

In Fig. 4, the investigated conductor system is shown. The 
near-ends of the six lines are marked with numeric labels. All 
conductors are stimulated by a Thévenin circuit at the near-
end. The stimulus and the terminations at the far-ends are 
listed in table I. Arranged above an ideal infinite ground plane, 
all lines have a height of 1.5 mm . The terminations are 
assumed along the vertical conductors that connect the 
conductors to a ground plane. All conductors have a radius of 
0.1 mm.  

For modeling and simulation CONCEPT-II [13] is used. 
The magnetic near-field is computed on an equally spaced grid 
7 mm above the ground plane in the grey area shown in Fig. 
4. Having a spacing of 5 mm, the grid contains 99 field points 
that are used for the application of the reconstruction methods. 
In order to investigate the influence of measurement noise the 
simulated data is modified by adding a noise signal with a 
magnitude of 70 dBμAm−1  varying the amplitude about 

±2 dB.  

Three variants of the presented current reconstruction 
method are used. The first variant only uses the network 
equations to obtain a continuous current distribution. In the 
second variant, the magnitude limitation is additionally used. 
Here, the voltage of every near- and far-end of the conductors 
is limited by the exciting voltage source, e.g. for line 3 the 
condition |𝑉S| ≲ 5 V is given. The third variant also uses the 
network equations and information about the termination 
circuits. Here, only the impedance information of the far-end 
terminations without any estimation of additional parasitic 
effects are taken into account. In table II, an overview of the 
described variants is presented. 

B. Application on Near-Field Data with Phase Information 

In the first investigation, the presented method is validated 
in principle. All three variants are applied on simulation data 
containing noise and phase information. In Fig. 5, the 

reconstructed current distribution for 100 MHz is exemplary 
shown for conductor 1, 3 and 5. Overall, all approaches lead 
to a useful result about the magnitude of the floating current 
although the raw data contain noise. In particular, the second 
and third variant calculate a distribution that is very similar to 
the simulated currents.  

 
Fig. 3. Illustration of the possible values of 𝑉T,i described by (25) with 

the representation of the limiting rows of the inequation system. 

 
Fig. 4. Investigated conductor system (black) and area of used near-

field data (grey) 

TABLE I.   
CIRCUITS AT NEAR-END AND FAR-END OF EXEMPLARY CONDUCTOR SYSTEM 

conductor 

number 

stimulus 

(near end) 

termination 

(far end) 

number of 

dipoles 

𝟏 1 V 𝑒𝑗90° , 10 Ω 100 Ω 66 

𝟐 1 V 𝑒𝑗90° , 10 Ω 100 Ω 66 

𝟑 5 V 𝑒𝑗0° , 50 Ω 50 Ω 66 

𝟒 5 V 𝑒𝑗180° , 50 Ω 50 Ω 66 

𝟓 3 V 𝑒𝑗0° , 50 Ω 50 Ω 66 

𝟔 3 V 𝑒𝑗0° , 50 Ω 50 Ω 66 
 

 

TABLE II.   
CONSIDERED CONDITIONS IN THE APPLIED VARIANTS OF THE CURRENT 

RECONSTRUCTION METHOD 

 Variant 1 Variant 2 Variant 3 

Kirchhoff’s  

circuit lawsa. ✔ ✔ ✔ 

Limitation  

of values 
 ✔  

Using termination 

information 
  ✔ 

Color in plots blue yellow green 

a. Kirchhoff’s circuits law is considered in all presented investigations 
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C. Application on Phaseless Near-Field Data 

After a general proof of concept, in this chapter the 
reconstructed current distributions for several frequencies are 
shown. For all investigation in this section, near-field data 
without phase information is used. Thus, the iterative process 
of III is applied. The condition  

𝜎abs,Magn
(i) < 1 ‰ & 𝜎phs

(i) < 1 ‰  (26) 

is used as stop criterion, and only 300  iteration steps are 
allowed. In the investigation, the phase of the current 
distribution is compared as well. For this comparison, the 
phase of the current at the far-end termination of conductor 5 
is assumed as zero for both, reconstructed and simulated 
current distribution. 

First, general evaluations of the iterative process are 
presented. Here, a conductor system is investigated for an 
excitation of 1 GHz. The iterative algorithm is applied 100 
times with different initial phase distributions. In Fig. 6, the 

developments of the characteristic criterions defined in (16) 
and (17) are shown for all 100 evaluations. The found current 
distribution is presented in comparison to the simulated 
current distribution in Fig. 7. The superimposed depiction of 
the results indicates the incidence of several solutions. Almost 
all evaluations of the iterative algorithm fulfill the stop 
criterion defined in (26). Especially for conductor 3 and 5, the 
determined magnitude of the current distributions is close to 
the reference value. Considering these reconstructed currents, 
it can be found that the error decreases with increasing 
magnitudes. So, there is a correlation between the 
reconstruction quality and the magnitude of the currents. 
However, there are large deviations of the estimated related 
phase from the simulation data. Also here, a correlation 
between magnitude of the currents and quality of the 
reconstruction can be suggested.  

In Fig. 8, one exemplary solution of the iteration algorithm 
is shown for several frequencies. Initially, the results for 
1 MHz and 10 MHz are discussed. For both frequencies, the 
reconstructed distributions applying variant 2 and 3 fit the 
expected nearly constant value. In all these presented cases, 
these reconstructed values are close to the reference value. 

 

 
Fig. 5. Given and reconstructed current distribution for 100 MHz using 

near-field data with phase information. 

 
Fig. 6. Development of the criterions defined (16) and (17) of  

100 exemplary evaluations of the iterative algorithm for 1 GHz. 

 
Fig. 7. 100 exemplary results form the iterative algorithm applying 

variant 1 in constrast to the simulated current distribution for 1 GHz. 
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Fig. 8. Reconstructed current distribution for several frequencies using 

phase-less near-field data 



However, the phase estimation is not as successful as the 
magnitude estimation. For conductor 1 the direction of the 
current flow is completely wrong assumed (phase gap of 
nearly 180 ° ). On the other conductors, suitable phase 
distributions are determined for the investigated frequencies. 
Nevertheless, the additional conditions of the solution lead to 
much better results. Here, the usage of termination 
information (variant 3) is more useful than the limitation of 
voltages (variant 2). Considering only the network equations 
(variant 1), the reconstructed distribution tends to form wave 
phenomena. For much higher frequencies, all variants 
determine predominantly good results for the magnitude of the 
current distribution. Using variant 3, the phase information is 
very close to the reference value. Overall, the comparison of 
the results for the examined frequencies carves out the 
usability of the additional conditions in the inverse problem. 
For lower frequencies, if wave phenomenon cannot be 
assumed, the consideration of termination information or the 
limitation of magnitude values leads to much better 
reconstructions.  

D. Evaluation of the Far-Field 

Knowing the current distribution, the far-field of the 
investigated conductor system can be estimated. As shown in 
II, the dipole model can be used to formulate a relation 
between floating currents and the electric field. Assuming the 
coordinate (0.08 m, 0.05 m, 0 m)  as central point of the 
investigated structure, the electric field is estimated in  
several distances along the 𝑦-axis according to Fig. 4. The 
observation point is 5 cm  above an ideal infinite ground 
plane. Here, the vertical component of the electric field is 
dominant. In Fig. 9, the deviation between the estimated and 
the simulated field from CONCEPT-II is presented. Using 
current distributions based on additional conditions (variants 
2 and 3), the far-field prediction is generally more accurate. 
Especially for lower frequencies, the usage of additional 
conditions leads to much better results. Furthermore, using 
variant 3, the closest estimation is achieved. Knowing the 
termination impedances, the estimated current distribution 
seems to be more accurate. 

VI. CONCLUSION AND OUTLOOK 

In this publication, the current reconstruction method is 
enhanced using additional conditions. The generally usability 
is shown. In addition, a simple iterative process based on the 
reconstruction method is presented that allows the application 
on phase-less near field data. The wide analysis of the 
computed results highlights the positive effect on the 
solution’s quality especially for lower frequencies. Finally, the 
investigation of the estimated far-field represents that the 
shown approach is potentially useful for EMI-analysis.  

Although, the assumption of the termination information 
is arguable. Often the information about the termination is 
only approximately and for lower frequencies feasible. 
However, exactly for this frequency range, the usage of 
termination information should be possible. In further works, 
the influence of inaccurate termination information could be 
evaluated. Also, considering non-linear terminations would be 
an interesting continuation of this work. Beyond, the current 
reconstruction should be applied on real phase-less 
measurement data. Moreover, the prediction of the far-field is 
just conceptual. The refinement of this model is intended and 
a comparison to antenna measurement should be done.  
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Fig. 9. Deviation of estimated vertical electric field at several 

distances. 
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