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 The propagation delay of edges shall be covered. 
 The damping shall be covered (steady state and edges’ slew-rate). 
 Reflections and ringing shall be shown. 

The standard cable-model available in most SPICE-compliant tools offers constant losses (constant for all 
frequencies). Therefor two main behaviours are covered (simulation and measurement fit): 
 Edges’ propagation delay. 
 The steady state level of “long bits”. 

Further essential properties are not covered, in other words simulation does not fit with measurement: 
 Ringing amplitudes and ringing duration. 
 Slew rate modifications (when a pulse travels along a cable). 

The required new extended cable-model has to meet several requirements, so that simulation and measurement 
match practically perfect from engineer’s point of view. 
 Common mode and differential mode (because twisted pair cables are used). 
 Impedances and delays. 
 Frequency dependent losses (which influence slew-rate, damping etc.). 

The development of the workflow to get satisfying cable-models was done in two main approaches: a 1st 
pragmatic approach (less successful) where measured S-parameter were directly used for time domain simulation 
and a 2nd more successful approach: a generic physical cable-model is parameterized according measurements; a 
succeeding mathematical approximation enables a time domain simulation. 

2. MODELLING OF CABLES 

2.1 Measurement and Simulation Results (1st Approach) 

When thinking about how to enable frequency dependant behaviour to simulation the obvious answer is: 
“Measure the S-parameter and use them as simulation input”: a vector network analyser with a four-terminal-pair 
S-parameter measure set-up was used for getting common mode and differential mode S-parameter. 
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Figure 2: Workflow overview 1st approach “measurement  simulation”. 

A simulation was done for getting the signal shapes for a single 100 ns bit in a 50 Ω environment. The 
succeeding figure shows the differential mode results only: 
 Measurement and simulation seem to fit perfect in all three cases A, B and C. 
 Unmotivated ringing appears. 

 
Figure 3: Measurement and simulation set-up (100 ns and 3 µs bit). 
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Figure 4: Using S-parameter measurement results in simulation (100 ns bit). 

The next example checks the behaviour when applying a “long” 3 µs bit. All three cases are far away from 
acceptable results: 
 Unmotivated ringing appears. 
 Completely faulty signal shapes appear ( linear measure). 
 The steady state symmetry enforced by the set-up is not available. 

 

 
Figure 5: Using S-parameter measurement results in simulation (3 µs bit). 

The reasons for this deviation are known, their elimination is difficult or impossible: 
 Parasitic components generated by the set-up itself. 
 Poor measurement accuracy especially at low frequencies (phase and attenuation). 
 Under-sampling at low frequencies in the linear case. 
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2.2 Measurement and Simulation Results (2nd Approach) 

The deviation between simulation and measured signal shapes in the 1st approach is not acceptable2. A modified 
2nd approach separated into an approximation phase and a simulation phase is necessary: 
 Approximation phase  

1: Measure signal shapes in time domain and S-parameter in frequency domain.  
2: Parameterize a generic physical cable-model3 for best matching (simulation  measurement).  
3: Approximate4 the output of the generic model with broken rational functions for several cable lengths.  

 Simulation phase:  
A dedicated cable-model5 uses the rational functions for user’s simulation of network architectures or 
topologies in time domain. 

The succeeding figure illustrates the complete work-flow (including the cross-check procedures during the 
development process). 

 

 
Figure 6: Workflow overview 2nd approach “measurement  approximation  simulation”. 

When applying the generic physical model to the example according figure 3 practically perfect results are 
generated (black lines in the succeeding figure): 
 The unmotivated ringing is eliminated. 
 The symmetry error is eliminated. 
 Self-inductive effect due to cable’s inner inductivity appears. 
 Simulation and measurement fits practically perfect (not shown in the figure). 

                                                           
2 Phase and attenuation error especially at low frequencies, parasitics which cannot be eliminated by 
recalibration. 
3 The model allows adjusting the properties of real cables like DC-resistor, capacitive and inductive loads per 
unit length, frequency dependant skin-effect and last but not least frequency dependant dielectric losses 
(designed by Prof. Jürgen Minuth, University of Esslingen, Automotive Electronics Lab). 
4 designed by TU Dortmund, On-board Systems Lab, Prof. Stephan Frei  
5 designed by TU Dortmund, On-board Systems Lab, Prof. Stephan Frei 
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Figure 7: Using S-parameter measurements and approximation results (generic model) 

in simulation (100 ns and 3 µs bit). 

2.2.1 Details to the Approximation Phase Step 3 
The generic physical model is able to generate data available from DC up to several GHz. Knowing the 
simulation sceneries allows to limit the frequency area which shall be covered by the approximation step 3 to 
e.g. a few Hz up to a few 100 MHz. The approximation tool6 fits rational functions best: 
 INPUT 
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o Hints 
The coefficients ak, bk, ck and dk are real numbers, the polynomial orders M and N are typically 
between 8 and 12.  
Cable lengths ℓ can be chosen (length from a few centimetres up to some 10 meters are 
typical). 

                                                           
6 designed by TU Dortmund, On-board Systems Lab, Prof. Stephan Frei 
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The succeeding example visualizes the approximation quality using a typical automotive twisted pair cable: 
 CABLE 

o uncoated twisted pair 
o specified differential mode cable impedance app. 98 Ω 
o generic physical model available from 0 Hz up to 2 GHz 

 INPUT 
o cable impedance Z as value table from 100 Hz up to 600 MHz 
o propagation coefficient γ as value table from 100 Hz up to 600 MHz 
o length of the cable 10 m 

 OUTPUT (differential mode only here) 
o polynomial coefficients for the cable impedance (order 11) 
o polynomial coefficients for the propagation coefficient e-γℓ (order 11) 
o edge-speed v0 (20 cm/ns) 

Inside the approximation area the matching between generic physical model and the rational functions is 
practically perfect (see succeeding figures: lines  dotted lines). From automotive communication point of view 
the model covers the area from DC up to the speed of FlexRay™ (10 Mbit/sec) perfectly. The deviation of the 
cable impedance for low frequency does not influence the results if using cable lengths available in passenger 
cars or trucks. 

 

 
Figure 8: Matching cable impedance Z “generic model”  “rational function model”. 

 

 
Figure 9: Matching propagation coefficient e-γℓ “generic model”  “rational function model”. 
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2.3 Simulation in time domain 

The On-board Systems Lab team7 designed a cable-model (rational function approach) in VHDL-AMS enabling 
time domain simulation. The matching between measurement and simulation is practically perfect from low-
speed CAN via CAN-FD up to FlexRay™. Topology simulations generate results which meet the accuracy 
requirements to support system evaluations. Post processes are available e.g. for generating eye charts, 
measuring slew-rates or ringing durations.  

2.4 Application Example 

Often topologies generate ringing when switching bus-interfaces from a driven state to a high-ohmic state. In 
case of CAN this corresponds to the change from any dominant bit to any recessive bit; in case of FlexRay™ 
this corresponds to the change of the EOF-bit to the idle state at the end of each frame. For evaluating the 
sampling properties it is essential knowing the ringing duration. The succeeding figure illustrates the ringing 
effect of four different cables in the use-case of a passive star with five nodes. 

 
Figure 10: Effect of frequency dependant losses: ringing in CAN and FlexRay™. 

The time constant of ringing’s envelop curve is linked strongly with the type of cable, in other words: with their 
frequency dependant losses. The complete area from DC op to “high frequencies” with reflections is covered. 
The question of a system designer: “How is the earliest possible sample-point influenced by the cable type?” can 
be answered. Assuming the blue area shows the threshold variations, we get: “case red/blue: ≈ 700 ns” and 
“green/brown: ≈ 850 ns”. The example would support a CAN application up to a few 100 kBit/sec. 

3. CONCLUSION  

The presented workflow offers a straight forward approach for of a time-domain simulation of topologies; the 
cable-models are parameterized based on measurement results. The simulation covers the DC-area up to the 
speed of FlexRay™ signals; however the new models can be parameterized for being used with much higher 
baud-rates. The matching between measurement and simulation meets engineer’s accuracy requirements. The 
achievable simulation speed is high enough to do topology simulations with e.g. 32 nodes where each node may 
transmit round robin messages.  

ABBREVIATIONS 

CM common mode 
CMC common mode coil 
DM differential mode 
EOF end of frame bit, followed by a high ohmic phase on the cables 
ESD electro static discharge 
SI-voting a procedure defined in FlexRay™ for estimating the signal quality 

                                                           
7 TU Dortmund University, Prof. Stephan Frei 
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