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Abstract—A new error metric is applied for estimating accuracy
of MoM solutions on purely 3-D geometries using triangle doublet
basis functions. This error metric is based on checking boundary
conditions performance (BCP) on scatterer surface and shown to be
suited for arbitrary 3-D geometries including open ones. First, accurate
expressions for the scattered field are derived to be valid at any
observation points including those on the surface of triangles. Further,
BCP error metric is examined for estimating accuracy of the scattering
problem solution on open cube geometry, and to find the correlation of
BCP error with that for near-field characteristics. Finally, BCP error
metric is applied to estimate accuracy of MoM solutions on realistic
car model, and to find the contributions of its elements to the total
error.
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1. INTRODUCTION

The Method of Moments (MoM) [1] is nowadays widely used for solving
EM and EMC problems on complicated surface and wire configurations
[2–4] including those encountered in automotive industry [5]. The
practical value of the obtained solutions and of predictions done
depends in large extent on the attained solution accuracy. However,
although much effort was done [6–10] (this list is by no means
complete), a convenient method for estimating accuracy of MoM
solutions on arbitrary geometries is lacking till now.

The experimental validation of numerical solutions for the
complicated geometries appears to be a difficult, lengthy, expensive,
and practically unrepeatable procedure [6]. Besides, measurements
themselves are regarded as models involving additional inaccuracy [7].
Further, comparison of MoM solutions with accurate (benchmark)
solutions [8] may be practically done only for the selected (benchmark)
geometries, that makes this method inefficient for arbitrary geometries.
That is why, in spite of existing mathematical basis [9], estimating
accuracy of MoM solutions is frequently done by convergence analyzing
[10], i.e., comparison of the obtained solution with those calculated
for the refined meshing of geometry. However, this method usually
requires computational costs exceeding those for the obtained solution
in scores of times. Due to this reason, the development of the
convenient method to estimate accuracy of MoM solutions on arbitrary
geometries is still required.

A natural criterion to estimate accuracy of MoM solutions is the
examination of boundary conditions performance (BCP) on scatterer
surface [11, 12]. However, difficulties arise when applying this criterion
for arbitrary geometries. First, existing error metric for comparing
fields fails when considering open geometries including plates and other
geometries with free edges. Further, evaluation of BCP error needs
calculation of scattered field on the scatterer surface, that cannot be
directly done by most of existing MoM codes, in which the observation
points on triangle plane are considered as singular [13]. Moreover,
difficulties arise when normalizing BCP error to properly characterize
the total error on the structure.

This work overcomes the difficulties above, suggesting the proper
BCP error metric to be suited to arbitrary 3-D geometries including
that for a realistic car. First, the proper BCP error metric is
introduced, and accurate expressions of scattered fields for triangle-
doublet basis functions [14] are derived to be valid at any observation
points including those on the triangle plane. Then, BCP error metric is
applied to estimate the scattering problem solution accuracy on open
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cube geometry. A close correlation of BCP error with those for current
and charge distributions is revealed based on rather accurate solution
for the sufficiently fine cube geometry. Finally, BCP error metric is
applied to estimate accuracy of MoM solutions on the realistic car
geometry, and to find the contributions of its elements to the total
error on the structure. All the calculations were performed using
original MoM-based code, which utilizes new solutions for the potential
integrals [15].

This work is organized as follows. Section 2 introduces BCP error
metric and derives the accurate expressions for the scattered fields.
Section 3 examines the total and partial BCP errors on open cube
and realistic car model geometries. Section 4 discusses the presented
results and merits of the BCP error metric. Finally, Section 6 outlines
our conclusions.

2. METHOD

2.1. Error Metric

The convergence of MoM solutions is traditionally verified by
comparing the obtained results with those calculated for the refined
geometries. In this way, accuracy of these solutions may be treated as
[8]

εJ [%]100

∫
S

∣∣∣ �JS − �JS0

∣∣∣ dS
∫
S

∣∣∣ �JS0

∣∣∣ dS (1)

where �JS and �JS0 are, respectively, approximate and accurate
(benchmark) solutions for the surface currents, and integration is
performed over the scatterer surface S. The error metric (1) presents
the relative error of mean absolute value (MAV) of current deviation
on the boundary surface. As shown in [8], only this error metric is
valid, due to the edge effect, for estimating accuracy of the surface
currents on arbitrary surfaces including open ones.

The drawback of error estimation (1) is that it needs either
inspection of the convergence of solutions for a number of geometries,
or knowledge of accurate (benchmark) solutions for the geometry
analyzed. However, the latter may be practically done only for selected
(benchmark) geometries. To estimate accuracy of MoM solutions for
arbitrary geometries of interest, it is natural to examine boundary
conditions performance (BCP) on the scatterer surface [11, 12]. In this
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way, we intend to define a suitable error metric, which is dependent, in
turn, on the kind of integral equations to be used in MoM calculations.

For closed surfaces, BCP error metric could be established based
on the root-mean square (RMS) value of the correspondent component
of the total field normalized to that for the incident field as

εE,RMS [%] = 100

√√√√∫
S

∣∣∣�n× ( �Esc + �Einc)
∣∣∣2 dS

√√√√∫
S

∣∣∣�n× �Einc
∣∣∣2 dS

(2a)

for electric field integral equations (EFIE) and

εH,RMS [%] = 100

√√√√∫
S

∣∣∣�n× ( �Hsc + �H inc)
∣∣∣2 dS

√√√√∫
S

∣∣∣�n× �H inc
∣∣∣2 dS

(2b)

for magnetic field integral equations (MFIE). Here �Esc, �Hsc and
�Einc, �H inc are the scattered and incident fields, respectively, S is the
scatterer surface, and �n is the normal to this surface.

However, RMS error metrics (2) cannot be applied to open
structures due to the edge effect, since numerators in formulas (2)
become unbounded because of the fields singularity in the vicinity of
free edges. Indeed, the scattered field components normal to the edge
tends to infinity as reciprocal of the root of the distance from this edge
[16]. Therefore, the integrals in numerators of (2) diverge for open
structures including free edges.

To define the BCP error metric valid for arbitrary structures,
including open ones, we overcome the convergence problems above
introducing, similar to (1), MAV error metrics, instead of RMS error
metrics of (2), as

εE [%] = 100

∫
S

∣∣∣�n× ( �Esc + �Einc)
∣∣∣ dS

∫
S

∣∣∣�n× �Einc
∣∣∣ dS (3a)
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εH [%] = 100

∫
S

∣∣∣�n× ( �Hsc + �H inc)
∣∣∣ dS

∫
S

∣∣∣�n× �H inc
∣∣∣ dS (3b)

to be used for EFIE and MFIE, respectively. Emphasize, that BCP
error metrics (3) directly indicate how well the obtained solution
satisfies the formulated problem. Since numerators in formulas (3) are
bounded for any geometries, including open ones, these error metrics
are suited for considering arbitrary 3-D geometries, including those
encountered in automotive industry.

The estimation of (3) needs calculation of the scattered fields
directly on the scatterer surface. However, this point was paid
less attention in MoM literature for triangulated geometries, and
observation points on the scatterer surface are considered to be singular
as in [13]. For this purpose, we derive below the accurate expressions
for the scattered fields being bounded at any observation points
including those on the surface of triangles.

2.2. Accurate Derivation of the Scattered Field

As is well known, the scattered field at any point of space may be
defined as

�Esc = −iω �A− �∇Φ, �Hsc =
1
µ
�∇× �A, (4)

where potentials �A and Φ are expressed via the currents �J on the
scatterer surface S as

�A(�r ) =
µ

4π

∫
S

�J
e−ikR

R
dS, (5)

Φ(�r ) = − 1
4πiωε

∫
S

�∇′
S · �J e

−jkR

R
dS (6)

where ε and µ are, respectively, permittivity and permeability of
surrounding medium, k is a wavenumber, ω is a cycle frequency of
excitation, R = |�r − �r ′| is the distance between the observation point
�r and source point �r ′, and time dependence is assumed as exp(iωt).

In MoM calculations, the current �J is represented in terms of the
known basis functions �fn as

�J(�r ′) =
N∑

n=1

In �fn(�r ′) (7)
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Once the MoM solution for unknown coefficients In is obtained,
and surface current �J is known, formulas (4)–(6) describe, in principle,
scattered field at any observation point. However, in case of
triangulated structure, these fields are usually expressed through the
potential integrals, each of which becomes singular on the triangle
plane. For this reason, these points are falsely considered as singular
in most of the existing MoM codes.

Below, we will obtain bounded expressions for the scattered fields
at any observation points for the well-known sub-domain triangle
doublet basis functions [14]

�fn(�r ′) =




ln

2A+
n
�ρ+

n �r ′ in T+
n

ln

2A−
n
�ρ−

n �r ′ in T−
n

(8)

defined on a pair of the adjacent triangles T±
n with areas A±

n and a
common edge of the length ln. Here, the vectors �ρ±

n = ±(�r ′ −�r ±
n ) are

the local position vectors of the source point �r ′ on the triangle plane,
�r ±

n are the position vectors of the remote vertices, and sign (+ or −) in
sub-indexes indicates whether the positive current reference direction
is out of or into the triangle.

To determine the scattered fields (4) for the current representation
(7) and basis functions (8), it is necessary to find the contributions to
these fields of the pairs of partial potentials �A±

n ,
�∇Φ±

n and �∇ × �A±
n ,

associated with n-th basis function (8).
For this purpose, let us first, following [14], introduce within

triangles T±
n the normalised area coordinates [17] of the source point

�r : ζ = A1/A
±
n , ξ = A2/A

±
n , and η = A3/A

±
n , where Ai are the

areas of subtriangles with remote vertices �ri, and A1 +A2 +A3 = A±
n .

Then, position vector �r ′ of the source point on triangle T±
n may be

represented in area coordinates as [14]

�r ′ = ζr1 + ξr3 + ηr3 (9)

Further, we use vector identities [18]

�∇×
[
e−ikR

R
�fn(�r ′)

]
= �∇e

−ikR

R
× �fn(�r ′)

�∇e
−ikR

R
=

(
−ik − 1

R

) �R

R

e−ikR

R

to obtain the following expressions for the unknown partial potentials

�A±
n = ±µ�n

4π
[(
�r1 − �r ±

n

)
I0 + (�r2 − �r1) Iξ + (�r3 − �r1) Iη

]
(10)
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�∇Φ±
n = ∓ �n

i2πωε

[
(�r − �r1) Ĩ0 − (�r2 − �r1) Ĩξ − (�r3 − �r1) Ĩη

]
(11)

�∇× �A±
n = ±µ�n

4π

{
(�r − �r1) × (�r1 − �r ±

n )Ĩ0 + (�r − �r ±
n )

× [(�r2 − �r1)Ĩξ + (�r3 − �r1)Ĩη]
}

(12)

where

I0 =
1∫

η=0

1−η∫
ξ=0

(
e−ikR − 1

R

)
dξdη + I ′0 (13)

Iξ =
1∫

η=0

1−η∫
ξ=0

ξ

(
e−ikR − 1

R

)
dξdη + I ′ξ (14)

Iη =
1∫

η=0

1−η∫
ξ=0

η

(
e−ikR − 1

R

)
dξdη + I ′η (15)

and

Ĩ0 =
1∫

η=0

1−µ∫
ξ=0

[(
−ik − 1

R

)
e−ikR

R2
+
k2

2R
+

1
R3

]
dξdη − k2

2
I ′0 − I ′′0 (16)

Ĩξ =
1∫

η=0

1−µ∫
ξ=0

[(
−ik − 1

R

)
e−ikR

R2
+
k2

2R
+

1
R3

]
ξdξdη − k2

2
I ′ξ − I ′′ξ (17)

Ĩη =
1∫

η=0

1−µ∫
ξ=0

[(
−ik − 1

R

)
e−ikR

R2
+
k2

2R
+

1
R3

]
ηdξdη − k2

2
I ′η − I ′′η (18)

are the integrals over triangular domains represented as the sums of
regular and singular parts, and the singular integrals

I ′0 =
1∫

η=0

1−η∫
ξ=0

1
R
dξdη (19)

I ′ξ =
1∫

η=0

1−η∫
ξ=0

ξdξdη

R
(20)
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I ′η =
1∫

η=0

1−η∫
ξ=0

ηdξdη

R
(21)

and

I ′′0 =
1∫

η=0

1−η∫
ξ=0

1
R3
dξdη (22)

I ′′ξ =
1∫

η=0

1−η∫
ξ=0

1
R3
ξdξdη (23)

I ′′η =
1∫

η=0

1−η∫
ξ=0

1
R3
ηdξdη (24)

are the so-called potential integrals, since they don’t depend on the
frequency of excitation.

The first terms of (13)–(18) are regular and may be easily
evaluated using Gaussian procedure specially developed for the
triangular domains [19]. The singular integrals (19)–(21), arisen in
calculating impedance matrix elements, are well studied in MoM
literature [20, 21] and found to give finite values at any observation
points including those on the triangle plane. This is the case also
for calculating the vector potential (10). Another case occurs with
integrals (22)–(24), arisen in field computations since, although they
were studied in literature [21], but are essentially singular (tend to
infinity), when the observation point approaches to the triangle plane.
This problem can however be overcome, when analyzing the complete
expressions for partial potentials (11), (12), and utilizing the original
evaluation of potential integrals (22)–(24) presented in [15].

Let us analyze, for the reasons of brevity, only essentially singular
parts of integrals (22)–(24) to be of the form [15]

I
′′ sing
0 = I ′′0 =

1
2A±

n

α′

d
(25)

I
′′ sing
ξ =

−(2BC − ED)I ′′0
4AB − E2

(26)

I
′′ sing
η =

−(2AD − EC)I ′′0
4AB − E2

(27)

where d is the distance from the observation point to the plane of
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triangle, α′ is the parameter defined by the triangle geometry [15], and

A = |�r2 − �r1|2 , B = |�r3 − �r1|2 , C = −2(�r − �r1) · (�r2 − �r1)2

D = −2(�r − �r1) · (�r3 − �r1), E = 2(�r2 − �r1) · (�r3 − �r1), F = |�r − �r1|2

Substituting designations above into (26) and (27) and making use of
vector identities [18]

(�a×�b) · (�c× �d) = (�a · �c)(�b · �d) − (�a · �d)(�b · �c)
we transform (26) and (27) to

I
′′ sing
ξ =

(�r3 − �r1) · {[(�r2 − �r1) × (�r3 − �r1)] × (�r − �r1)}
[(�r2 − �r1) × (�r3 − �r1)]2

I ′′0 (26a)

I
′′ sing
η = −(�r2 − �r1) · {[(�r2 − �r1) × (�r3 − �r1)] × (�r − �r1)}

[(�r2 − �r1) × (�r3 − �r1)]2
I ′′0 (27a)

Further, we substitute (25), (26a) and (27a) into (11) and (12) and
introduce the unit normal vector to the triangle plane

n̂ =
(�r2 − �r1) × (�r3 − �r1)
|(�r2 − �r1) × (�r3 − �r1)|

to obtain the following expressions for the singular parts of the
potentials sought

�∇Φ±sing
n = ± �n

i2πωε
α′

2A±
n
n̂± (28)

�∇× �A±sing
n = ∓µ�n

4π
α′

2A±
n
n̂± × (�r − �r ±

n ) (29)

where n̂± = n̂, when observation point lies from the direction of
positive normal to the triangle plane, and n̂± = −n̂ otherwise.

Formulas (28) and (29) give bounded values for the essentially
singular parts of potentials (11) and (12) being continues when
approaching the triangle plane, but discontinuous, when passing this
plane. These discontinuities however have the physical origin and are
caused by the charges and currents on the surface of triangle.

Hence, formulas (10)–(12), together with (13)–(29) and details
of [15], completely describe the fields scattered by the triangulated
geometries at any observation points including those on the triangle
plane. Note, that these formulas are general enough, when using
basis functions (8), and may be utilized both for conventional single-
point testing procedure [14], and for ε-Rao and enhanced (including
Galerkin) integration technique [22].
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3. RESULTS

BCP error metric (3a) was applied to examine convergence and
estimate accuracy of MoM solutions for a number of geometries
using triangle doublet basis functions and single-point Galerkin testing
procedure for EFIE [14]. All the calculations were performed by
original Tri-Dimensional code “TriD” [15].

First, the scattering problem on open cube geometry of the size
λ × λ × λ was analyzed when exposed to the normally incident plane
wave, polarized along its horizontal side (Fig. 1).

Figure 1. Problem geometry.

Fig. 2 shows the BCP errors of the obtained solutions versus the
number n of triangles per the side of uniformly triangulated open
cube. For comparison, two integration scheme results are presented
here: 1-point scheme utilizing field values in the centers of triangles,
and, more accurate, 9-point scheme [21] applying Gaussian integration
over the surface of triangles. These results indicate that BCP error
is monotonically decreased with increasing the number of triangles.
Besides, BCP errors calculated by 9-point scheme are essentially
greater than those obtained by 1-point scheme. This means that the
applied testing procedure imposes boundary conditions being more
favorable for the centers of triangles.

Figs. 3(a,b) show the correlation of BCP errors with errors of
near-field characterization of the problem for the current and charge
distributions, respectively. The charge distribution error was evaluated
using an error metric similar to (1). As a benchmark solution, solution
for the sufficiently fine cube geometry with n = 60 (N = 54120
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Figure 2. Relative BCP error of electric field for two integration
schemes versus the number of triangles per the side of the open cube.

(a) (b)

Figure 3. Comparison of 1-point relative BCP error with current (a)
and charge (b) distribution errors.

unknowns) was utilized. For approximation purposes, currents and
charges in the centers of triangles with BCP error of 6% were applied.
These results reveal that BCP error for electric field is closely related
with those for current and charge distributions. Moreover, starting
from the certain n, this error lies between the 1-point and 9-point
current and charge distribution errors.

To examine the contributions of separate geometry elements to
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(a)

 
 
(b)

Figure 4. Distribution of partial BCP errors on open cube geometry
calculated by 9-point integration scheme for n = 8 (a) and n = 16 (b).

the total BCP error, Figs. 4(a, b) show the distributions of partial
BCP errors on the surface of triangulated cube calculated by 9-point
integration scheme for the coarse (n = 8) and refined (n = 16)
geometries, respectively. The values of partial errors on separate
triangles are shown on color bars presented at the left. These
distributions show, that maximum contributions to the total BCP
error are associated with geometry elements distributed along the open
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(a)

 

 
(b)

Figure 5. Distribution of current (a) and charge (b) partial errors
on open cube geometry calculated by 9-point integration scheme for
n = 8.

sides of the cube. Besides, the significant contributions to the total
error are also produced by the elements distributed nearby rectangular
bends between the cube facets. Finally, comparison of the results for
the coarse and refined geometries reveals the significant reduction (in
3 times) of maximum partial errors with increasing the number of
triangles (in 2 times per side), resulted in decreasing of the total BCP
error (in 3/2 times).
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Figure 6. BCP error on triangulated car model versus the number of
unknowns N calculated for 1-point and 9-point integration schemes.

To find the correlation of partial BCP errors with errors of near-
field characteristics, Figs. 5(a, b) present the partial errors of current
and charge distributions on open cube surface. The comparison of
partial BCP errors with those for current and charge distributions
reveals a good agreement between BCP and charge distribution errors.
However, maximum partial BCP error lies between the maximum
current and charge distribution errors.

Next, BCP error metric (3a) was applied to estimate accuracy of
MoM solutions for the realistic car model excited from the top by an
incident plane wave polarized along the length of the car at frequency
f = 300 MHz.

Fig. 6 displays the BCP errors of the obtained solutions for
almost uniformly triangulated car geometries versus the number of
unknowns. In this Figure, 3 cases of triangulations for the same model
are presented: 2709 triangles (4028 unknowns), 4449 triangles (6602
unknowns), and 8998 triangles (13340 unknowns). It is seen, that
solution error is monotonically reduced with increasing the number
of unknowns (triangles). However, even for the fine mesh with 8998
triangles, BCP error is of 27.8% (for observation in the centers of
triangles), and 34.9% (for 9-point integration over triangles).

Fig. 7 shows the distribution of partial BCP errors on the surface
of the fine (8998 triangles) car geometry, calculated by 9-point scheme.
From this Figure, it is clearly seen, that maximum partial errors
(0.184% per triangle) are observed nearby the back doors of the
car. The significant errors are also detected in vicinity of the free
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Figure 7. Distribution of partial BCP errors on triangulated car
model (8998 triangles) calculated by 9-point integration scheme.

borders and slots between the car elements that requires more tidy
consideration of these elements.

Thus, BCP error allows estimating accuracy of MoM solutions on
purely 3-D geometries both on total structure and its separate parts.

4. DISCUSSION

The presented results show, that BCP error metric (3a) allows
us to properly describe the solution convergence for arbitrary 3-D
geometries, to give the reasonable values of the total error correlated
with those for near-field characteristics, and to find the contributions of
separate geometry elements to the total error on the boundary surface.

In particular, from Fig. 2 it follows, that uniformly increasing
the number of triangles, one can attain any desired accuracy of the
solution. Fig. 3 shows, that BCP error is directly correlated with errors
of near-field electromagnetic characterization of the problem. Fig. 4
reveals the mechanism of accumulation of the total error, allowing us
to find the geometry elements the worst contributed to the total error.
Fig. 5 shows the correlation of partial BCP errors with those for near-
field characteristics. And finally, Figs. 6 and 7 applies the BCP error
metric for realistic car model geometry to find out both the quality of
the mesh used and the recommendations for its refinement.

From the analysis above it follows, that BCP error metric allows
evaluating accuracy of MoM solutions in near-field region on any
surface configurations, including those with free boundaries. The
values of the obtained errors reflect the maximum errors of near-field
characteristics, which are decreased when moving from the boundary
surface. In the same time, this error metric has an advantage over
other near-field error metrics since it needs not a refined geometry or
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benchmark solution for its estimation.
Finally, BCP error metric may be applied to compare various

triangulations for the same model, to modify the currently used basis
functions and testing procedures, and to create a new adaptive MoM
scheme by property indicating geometry elements, which are worst
contributed to the total error on the structure. These extensions will
be done in our further works.

5. CONCLUSIONS

In this work, a new error metric, based on checking boundary
conditions performance (BCP) on the scatterer surface, has been
applied for estimating accuracy of MoM solutions on purely 3-D
geometries for triangle doublet basis functions. For this purpose,
accurate expressions for the scattered field have been derived to be
valid at any observation points including those on the surface of
triangles. Further, the BCP error metric has been applied to the
scattering problem solution on open cube geometry. A close correlation
of BCP error with those for the current and charge distributions has
been revealed based on rather accurate solution for the sufficiently fine
cube geometry (54120 unknowns). Next, the BCP error metric has
been applied to estimate accuracy of MoM solutions on the realistic
car geometry. Finally, possibilities of the BCP error metric for further
developments have been outlined.
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