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Abstract – Computer simulation of ESD for simplified objects is described and compared to
measured transient fields of human/metal ESD. The simulation algorithm uses the Method of
Moments in time domain, coupled with non-linear arc resistance model. Transient currents
and fields are analyzed from EMC point of view. Validation of  the numerical simulation is
done by comparison to experimental data. The simulated structure models the human/metal
ESD in its peak current and field values and their derivatives reasonably well.
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I. INTRODUCTION

Electrostatic discharge (ESD) is a well-recognized threat to electronics. Of all impulsive
disturbances, it has the shortest risetime with a lower risetime limit about 20 ps for voltages above
1.5 kV [1]. The discharge is associated with strong fields, for example, a 0.7 ns  risetime
human/metal discharge at 5 kV will cause a magnetic field of approx. 30 A/m and an electric field
of 12 kV/m at 0.1 m distance (arc length 0.8 mm) [2]. Such large fields can easily disturb electronic
systems. They may even permanently lose functionality e.g. by latch-up, by the loss of information
stored in flash memory or by hardware damage, which is often seen in MR-heads [3].

Considerable effort has been devoted into the study of ESD current waveforms
[1,4,5,6,7,8,9,10]. Of particular interest are the amplitude and rise-time variations due to different
voltages, approach speeds and electrode shapes. In contrast to most high voltage breakdowns, air
discharge ESD occurs mostly between approaching objects. The low reproducibility of air discharge
ESD is well known e.g. with the same object and charge voltage discharge currents and fields vary
by large amounts. Different reasons such as corona have been offered to explain this phenomena
[7,8,11]. But real reason behind the low reproducibility is the combined influence of statistical time
lag (see appendix) and speed of approach [1,9,12] that allows the gap to close further. Most ESD
occur at gap distances smaller than the Paschen value (see appendix). The electrostatic field
increases as the gap closes. The increased field enhances the ionization processes once the
discharge is initiated. The shorter the gap is for a given voltage, the faster the discharge current will
rise. Measurements show [1] that the peak current derivative may vary by up to three orders of
magnitude for discharges with the same object, at the same voltage just due to different arc lengths
(see appendix).

In Fig.1 measured peak current derivatives are shown as a function of arc length for
hand/metal ESD into a broadband current sensor [13]. Measurements were taken at different
approach speeds and humidities. The measurement bandwidth was approx. 3 Ghz (SCD 5000 with
compensated external delay line). The peak current derivative increases from 3 A/ns to 600 A/ns
with reduced arc length. Such a change has severe consequences on the severity as an EMC threat
making it necessary to characterize electrostatic air discharges not only by the object and voltage
but additionally by their arc lengths. Furthermore, the strong dependence on the arc length provides
important criteria for testing the usability of electromagnetic and arc models.
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Fig.1. Measured peak current derivatives versus arc length for hand/metal ESD using a small metal
rod (6 cm long, 8 mm diameter) at 10 kV. All measurements shown in this article were done at
about 60 m above sea level. The object's voltage was kept constant by connecting it via a Mega-
ohm resistive wire to a power supply.

Calibrated transient field measurements of ESD are rare [1, 9,14, 15,16,17]. Some analytical
estimations and numerical calculations of transient fields of ESD have been published
[14,15,18,19,20,21,22,23]. Wilson and Ma [14] modeled the radiating elements as an electrically
small dipole excited by measured discharge current. In their measurements, they only used static
breakdown, i.e. ESD having arc lengths in accordance to the Paschen law. This lead to very slow
rising ESD waveforms. They assumed that the arc and some part of the discharging structure cause
the radiation. This has often been misinterpreted as if only the arc radiates. But as pointed out in
[24] not only the arc but the complete structure radiates. A small dipole model may fail to predict
important characteristics [23]. Ishigami used a cosine distribution and measured discharge currents.
Fujiwara [18] used the small dipole model and obtained the currents by analytically solving the
discharge of two point charges via an arc. Later he simulated sphere discharges using FDTD but
obtained the current from measurement [23]. To model the arc he used Rompe and Weizel's law
[25] and arc lengths as given by the Paschen law calculated the current ahead of the FDTD
calculation. Angeli [19] used FDTD to model the discharging object but did take the arc into
acount. Coupling into enclosures was calculated via FDTD by Angeli and Van den Berghe [20,26]
using current waveform given by the IEC standard and by Cerri using measured currents [27]. But
the reported calculations are incomplete, as they do not couple the arc to the discharging structure.
Without an arc model, the field from ESD can only be calculated if measured currents are used or if
the currents are obtained by other means like analytical estimations.

The objective of this work was to develop an efficient algorithm for computer simulation of ESD,
which includes both the object and the arc. Due to the non-linearity of the arc, the time-domain
methods are preferable.

 But the dimensions are hard to handle numerically. One needs to know the electric field in
the arc very accurately. But the arc is less than 3 mm long, very small compared to the object size of
up to 1 m. In a first step, a simple thin wire algorithm had been developed to simulate a discharging
rod [1, 9]. In this paper, results are presented for perfectly conducting bodies of revolution
discharging through an arc into an infinite large ground plane at a given initial voltage and arc
length.

The proposed algorithm is based on the Method of Moments (MoM) in the time domain and
models the non-linear arc. Its linear part has been validated against literature data. The complete
algorithm has been validated against measured data. Additionally, it is shown that a simplified
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geometry can be used to approximate peak current, fields and their derivatives for human/metal
ESD.

II. PROBLEM SOLVED

We simulate the discharge of a perfectly conducting body of revolution which approaches a
ground plane being charged to a fixed voltage as shown in Fig. 2.

At some distance h from the plane the breakdown occurs. If the electrostatic field is quasi
homogeneous (no pre-breakdown space charges) and the statistical time lag negligible, Paschen's
law will predict the distance h. But for most practical cases, the statistical time lag can not be
neglected, i.e. h will be smaller than the value predicted by Paschen’s law.

Fig. 2. Geometry of the problem. A and b: semiaxis of the spheroid, h: arc length, r: arc diamter.
The  z-axis is the axis of revolution.

For realistic approach speeds, the electric field prior to breakdown can be treated as an
electrostatic field. Initial condition of the dynamic breakdown process is the electrostatic charge
distribution on the surface.

The algorithm consists of the two subparts: electrostatic and dynamic.
1. Electrostatic

First the electrostatic problem is solved. The resulting electrostatic charge distribution can be
considered as initial data for the transient process.

2. Dynamic
Ohm’s equation in its differential form is used to describe the transient non-linear process in the
arc. To obtain the conductivity we use the model of Rompe and Weizel.
The redistribution of charges on the discharging body and its mirror image are derived from a
time domain formulation of the magnetic integral equations. MoM solves this boundary value
problem directly in the time domain.
The arc current influences the charge distribution on the body in two ways: by fields radiated
from the arc, and by current flowing from the arc onto the surface, which does Kirchhoff's law
models.
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III. ELECTROSTATIC CONSIDERATION

Once the charging process has come to an end, the voltage is determined by the capacitance,
by corona losses or by charge drainage through high impedance ground paths. Neglecting charge
losses, only the capacitance will determine the voltage. It changes during the approach to ground.

Fig.3 presents the calculated capacitance of the spheroid as a function of the distance to the
ground plane as calculated by a simplified algorithm based on the Method of Auxiliary Sources
[28,29]. The spheroid's free space capacitance value is 13.549 pF.

Fig.3: Calculated capacitance to ground for a spheroid of a= 31 cm and b = 5 cm semi-axis. See fig.
2 for the geometry.

Assuming an initial voltage of 10 kV at a distance of 1 m the voltage will drop to 7.2 kV at a
distance of 1.8 mm. Consequences are:
1) Even if a further reduction of the gap length due to the combined influence of the statistical

time lag and speed of approach does not take place, the reduced voltage will cause a faster
rising discharge current as breakdown field strength in air increases as the voltage goes down.

2) The enhanced charge accumulation at the ground plane and the lower tip will cause a higher
peak current value.

3)  A voltage value measured in a position other than the discharge position will not represent the
voltage at the beginning of the sparking.

The charge density distribution along the generating line of a spheroid (semi-axis 31 cm -
5 cm, voltage: 5 kV, gap-length: 0.6 mm) is shown in fig.4. A large portion of the charge is
concentrated near the channel. The steep electric field  gradients near the gap require very accurate
calculations in this area.

The breakdown process is greatly affected by the amount of charge in the lowest part of the
body. For rotational bodies with a smooth lower tip the more charge is concentrated close to the
gap, the larger the peak current will be.
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Fig. 4: Charge density along the generating line of the spheroid.

Fig. 5 shows normalized experimental current maximas compared to normalized calculated
maximas of electrostatic charge densities. The values were obtained the following way: For each
voltage peak currents were measured at different arc lengths using 3 GHz bandwidth [1,2]. Those
peak currents were normalized to the largest peak current measured at that voltage and plotted.
Charge density calculations were done at the same arc lengths and voltages as in the experiment.
They again were normalized to the largest charge density value for each voltage level and plotted.
From these figures it can be seen, that Imax is proportional to the charge density at the lower tip of
the spheroid. The coefficient of proportionality depends on the voltage V. Most likely this holds
true for convex bodies, but we may not generalize the proportionality between peak charge density
and peak current as it has not been tested sufficiently for other geometry.

Fig.5. Relative relationship between peak discharge current and maximal charge density prior to the
discharge for different voltages as a function of arc length.
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IV ARC MODEL FOR ESD

The arc is electrically small; i.e. a time dependent resistor can model it. A choice of
empirical models and models which take basic ionization processes into account exist. Examples
are the models by Braginski [30], Rompe and Weizel [31], Toepler [25],  Mesyats [32,33] and
others [34,35,36,37,38,39].

For current values and time frames typical for ESD the models of Rompe and Weizel [31] and
Mesyats [32] are preferable as they reproduce the influence of the arc length on the discharge
current correctly [1,9]. Only for arc lengths in accordance to the Paschen law, Toepler's law
provides results similar to Rompe and Weizel's equation leading to the wrong impression [5] that
ESD can be modeled using Toeplers law. But Toeplers law cannot reproduce the influence of the
arc length on the discharge current correctly [1, 9].

According to the model of Rompe and Weizel the arc resistance as a function of time is given
by:

R t
h

a I t dtR arc

t
( )

( )

=
′ ′∫

2

2 2

0

(1)

Where R(t) is arc resistance ([Ohm]), 2h is length of arc and its image ([m]), I tarc ( )  is arc current
([A]), aR  a parameter ([m2/V2sec]) derived from basic ionization processes [31,34], t is time ([sec]).
Expression (1) implies a constant electrical field along the channel.

In the numerical implementation an initial resistance value of 1 MOhm or 10 MOhm was
used to start the discharge process. As long as the initial resistance value is much larger than the arc
resistance during the important phase of the discharge, any value can be chosen. The discharge
wave shape will not be influenced; it will only be shifted in time.

Ideally, aR would be a constant. Due to the numerous simplifications in Rompe and Weizel’s
law, some deviations between the real arc resistance and the calculated one must be expected.
Literature values for aR in air under normal pressure mostly derived using only slightly
overvoltaged spark gaps are in the range of 0.5 10-4 to 2 10-4 m2/V2sec [33,32,34,36, 40]. If aR  is
assumed to be independent of voltage and arc length a general match between simulated and
measured ESD results [9] is achieved at a value of 1 10-4 m2/V2sec. But some differences remain.
The simulation provides somewhat too short rise-times at long arc lengths and too long rise-times
for short arc lengths. The deviations are not very severe judged against the overall influence of the
arc length: Although the peak current derivative changes more than two orders of magnitude with
arc length (fig. 1), the predicted derivative does not deviate more than 50% from the measured
values [9]. To analyze which simplifications cause this deviations is beyond the scope of this paper
but the simulation can be improved by modifying the value for aR .

While investigating highly overvoltaged spark gaps for impulse shaping, Mesyats [33, 32,
40] realized that calculations using Rompe and Weizel’s law will not provide fast enough current
rises if values as mentioned above are used. To overcome this, one can adjust aR to larger values for
strongly overvoltaged ESD events. But the values need to be derived by an experiment, which is
independent of the measurements or simulations to which we are applying the improved aR  values.

To do so, a 150 Ohm TEM line was discharged while measuring current and arc length [9].
The currents were compared to a SPICE simulation using Rompe and Weizel’s law. This lead to the
values of Table 1 which are more suitable for ESD than a constant value for aR . But one must be
aware of the limitations of air discharge models: At voltages below 1000 V or at strongly
overvoltaged spark gaps at higher voltages surface processes start to dominate the ionization,
somewhat similar to a vacuum breakdown. It is questionable to apply air discharge physics to the
Charged Device Model simulations as it has been done in [12,41].
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Table 1: Range of aR  values for ESD calculation

Voltage
[kV]

Arc length
[mm]

Ra
[m2/V2sec]

3.0 0.57 Paschen value 0.5 to 1.0 410 −⋅
0.4 1.0 to 2.0 410 −⋅
0.3 1.5 to 2.5 410 −⋅

5.0 1.1 Paschen value 0.5 to 1.0 410 −⋅
0.9 0.8 to 1.2 410 −⋅
0.5 1.0 to 3.0 410 −⋅

7.5 1.9 Paschen value 0.5 to 1.0 410 −⋅
1 1.0 to 2.0 410 −⋅
0.5 2.0 to 3.0 410 −⋅

10.0 2.7 Paschen value 0.5 to 1 410 −⋅
2 0.8 to 1.5 410 −⋅
1 2.0 to 3.5 410 −⋅
0.7 2.0 to 4 410 −⋅

Presently we could not narrow the ranges given any further. This is caused by the uncertainty
in the arc length measurement (+/- 30 mµ ), the estimation of the stray capacitance between the
TEM line and the current sensor and due to the bandwidth limit of the oscilloscope (SCD5000 with
frequency compensated external delay line, approx. 3.5 Ghz bandwidth see).

All aR values used for simulations were within the range given in Table 1.

V. THE TRANSIENT PROCESS ON THE BODY

This section describes the dynamic process. The object is considered as an antenna excited
by the discharge current. As the excitation is non-linear, the numerical analysis of the transient
fields is preferably done in time domain. This allows the combination of the antenna algorithm
[42,43,44,45,46] with a physical description of the ionization process in the arc [1, 9, 49].

Let us consider this model in detail. In the moment before the discharge, the static charge
distribution ρstat r( )

r
 is known on all metallic surfaces. During the discharge, this distribution will be

disturbed. Let us denote this charge disturbance by ρtrans r t( , )
r

. The total charge density in any point
on the surface of the body or on the plane is  ρ ρ ρ( , ) ( ) ( , ).

r v r
r t r r tstat trans= +  The surface current

density 
r r
J r t( , )  relates to the transient part of the charge density. So the transient problem is to find

the surface current densities 
r r
J r t( , )  and the arc-current density 

r r
J r tarc ( , ) . Using these quantities all

charges and fields can be calculated. The mathematical model for 
r r
J r t( , )  and 

r r
J r tarc ( , )  is

formulated as follows.
1. On perfectly conducting surfaces 

r r
J r t( , )  satisfies the Integral Equation for the Magnetic Field

(IEMF):
r r r r
J r t n H r t narc( , ) $ ( , ) $= × + ×2 1

2π
,ds

R
R

),r(J
c
1

R
),r(J

S
2∫ ×







 τ′

∂τ
∂+τ′

r
rrrr

                        (2)

where r
r

 is located on the metallic surface S.
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2.  In each point of the arc the current density satisfies Ohm’s differential law:
      (r r r r r

J r t r t E rarc stat( , ) ( , ) ( )= ⋅ +σ ),)t,r(E)t,r(E surf
trans

arc
trans

rrrr
+                                                 (3)

where r
r

 is located in the volume of arc.

3. Initial values are written as follows:

    








=
=

=

.0t),r(
;0t),r(J

;0t),r(J

trans

arc
r

rr
rr

                                                                              (4)

Let us consider some terms of these expressions. In equation (2) 
r r
H r tarc ( , )  is the magnetic

field on the metallic surface caused by fields radiated by the arc-current. It is given by:

     
r r

r r
H r t

J r
R

arc arc

Varc

( , )
( , )= ′ +


∫

1
2π

τ 1
2c

J r
R
R

dvarc arc
∂
∂τ

τ
r r

r
( , )′ 

×                                           (5)

Here Varc is the volume of the arc and its mirror image. S is the area of the surface of the body and
of its image. 

r
r  is the point of observation, 

r′r  is the point of integration, τ  is the delay time:

τ = −t
R
c

; R R=
r

, and 
r r r
R r r= − ′. c is the speed of light, $n  is the outer normal of the surface. In

equation (3) 
r r
E rstat ( )  is the electrostatic field of the charge distribution before the discharge. This

field initiates the spark. 
r r
E r ttrans

arc ( , )  are the transient fields radiated by the arc and its mirror image

and 
r r
E r ttrans

surf ( , )  is the transient field radiated by the body and its mirror image. These fields are
calculated by:

     
r r

r r
E r t

R
J r

Varc

trans
arc arc( , )

( , )= ′ −

∫

1
4

1
π

µ ∂ τ
∂τ

ρ τ ∂
∂τ

ρ τ
ε

arc r
R c

r
R
R

dv
( , )

( , ) ,
r

r
r

′ + ′









1
2arc arc  (6.a)

  
r r

r r
E r t

R
J r

S

trans
surf ( , )

( , )= ′ −

∫

1
4

1
π

µ ∂ τ
∂τ

ρ τ ∂
∂τ

ρ τ
ε

( , )
( , ) ,

r
r

r
′ + ′









r
R c

r
R
R

dS
1

2                                   (6.b)

Let us consider only bodies of revolution. We introduce the system of orthogonal surface

coordinates with the unit vectors: 
r

r
r

r
r
rn

r
r

n
r
ru

u

u
v

v

v

= =,  , where u is ”radial” coordinate or the

coordinate along the generating line, and v is the ”azimuth” coordinate,r r r r r r
r r u r r v r ru v u v= = ⋅ =∂ ∂ ∂ ∂/ , / , .  0  For bodies of revolution only radial currents exist. The IEMF
can be rewritten as:

     J r t H r tu v( , ) ( , )
r r= − −2 arc 1

2
1

π
τ ∂ τ

∂τ
J r

R c
J r

G r ru u

S

( , ) ( , )
( , )dS

r r
r r′ − ′



 ′∫ ,                           (7 )

with G r r
R n n

R
u v( , )

[ ]r r
r r r

′= ×
2 .

The MoM solves this equation. Let us consider some computational problems arising during
the numerical realization of the MoM algorithm.
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At first a space and time segmentation is done. The simplest scheme for discretisation is
uniform discretisation ( ,∆ ∆ ∆l l t× ×  where ∆ ∆l c t= .). Since integration is performed in the space
coordinates, subsectional collocation with a δ-pulse approximation in space can be used. Using
Galerkin’s method we can write a discrete analogue of equation (7):

     

J i, j H i, j

J k
R c

J k
G ds

u
i

v
arc

u u

S
k

N

vu
k i

k

s

( ) ( ( )

( , ) ( , )
),

=
−

− −

+








∫=

∑

1
1

2

1
2

1

1

β

π
τ ∂ τ

∂τ
∆

                                                             (8)

Here i is used to number the belts (we assume that the body is divided into Ns belts), j is used for
time steps, ∆Sk  is the area of k-th belt. In addition, each belt is subdivided into M k  patches. M k

depends on the number of belt k. For all patches except in the case of i=k and for the patch nearest
to the arc, the integral in (8) is approximated as follows: The current density is assumed to be
constant on the patch. Instead of integrating we multiply the Green's function with ds, the area of
the patch. The Green function is calculated for the center of the patch. For the first patch we assume
that the current is constant, but not the current density.
Integration is done by Gauss law. This special treatment for the first patch is needed as it is very
close to the arc. When k=i the small area around the point of observation contains the current
J i ju ( , ) . The effect of this area on the right side of the integral (8) can be expressed by the self-

influencing integral. To underline this fact we use the notation ∫. The portion of the field

radiated by the self-patch can be taken into account assuming that the current density is constant
along the patch:

     ... , ( )
selfpatch

u v
J

S
k k∫ = = −β β

π
1

2 4
0

∆
,                                                                           (9)

where ku and kv are the principle curvatures of the surface and ∆S0  is the area of small patch [29].
For a spheroid with semi-axis a and b we have:

     G
x x T z z T

Rvu
k i z x, ( ) ( )= − ′ − − ′

2                                                                                                                 (10)

     T
b u v

b u a u
x = ⋅ ′ ′

⋅ ′ + ⋅ ′
cos( )cos( )

( cos( )) ( sin( ))2 2

     T
a u

b u a u
z = − ⋅ ′

⋅ ′ + ⋅ ′
sin( )

( cos( )) ( sin( ))2 2
                                                                                                  (11)

     R x x y z z= − ′ + ′+ − ′( ) ( )2 2 2

     0 0
2

≤ ≤ ≤ ≤u vπ π
, .

x b u
y
z a u

= ⋅
=
= ⋅

sin( )

cos( )
0

′= ⋅ ′ ′
′= ⋅ ′ ′
′= ⋅ ′

x b u v
y b u v
z a u

sin( )cos( )
sin( )sin( )
cos( )

It should be noted that actually G vu
k i,  should be rewritten because it also contains the mirror

image of the body.
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For the calculation of the retarded time, it is necessary to know the time delay between the
event, which caused the field and the reaction at the point of observation. This is given by
τ γ= − = +t R c R c n dt/ , / ( ) ,  where n is an integer, and 0 1≤ ≤γ .  A two-point smoothing
approximation was used for the current and its derivative:
     J u u j n( , ) ( )J( ,( )dt)′ = − ′ − +τ γ1                                                                                     (12)
                    γJ u j n( ,( )dt).′ − − 1

Due to the chosen time/space discretisation, coupling between neighboring patches is always
delayed by at least one time step. This allows calculating the inter-patch coupling by previously
calculated current densities. The obtained current distribution is used to calculate the transient
fields.

The most critical part of the algorithm is the coupling of the arc to the patch nearest to the arc.
The fields in the arc contain only a z-component. Static calculation show that E rstat ( )

r
 differs along

short arc (0.1-1 mm) by less than 7 %. We assume that the current along the channel is constant.
Now we integrate equation (3) over the channel and its image. We obtain:

     ++= ∫∫
−−

h

h

arc
trans

h

h
statarc dz)t,z(Edz)z(E)t(I)t(R ,dz)t,z(E

h

h

surf
trans∫

−
                                                  (13)

where R h
S t

= 2

0σ( )
 and S0 is the area of cross section of the spark channel.

Estat can be calculated accurately using electrostatic methods. If the current is constant along
the channel ρarc  and ∂ρ ∂τarc /  are equal to zero in the arc.
Assuming that we observe the arc current at the plane z=0 we can re-write the second term (13) as:

,
dt

dI
L)t,0z(Eh2dz)t,z(E arcarc

trans

h

h

arc
trans −==⋅=∫

−
                                                                   (14)

     ∫
+

−π
µ⋅=

h

h R
dz

4
h2Lwhere .

Since the point of observation is near the surface, we can express E ttrans
surf ( )  in the channel as normal

component of electric field at lower tip of the discharging body:

     
0

)1(
transsurf

trans
)c/)zh(t(

)t,z(E
ε

−−ρ=                                                                                     (15)

c/)zh( −  denotes the time-delay between the transient charge and its effect on the body. We also
assume a permittivity of 0ε  within the arc. By ρtrans t(1) ( )  we denote the charge density in the lowest

part of the object. Easily we can find the charge )t(q )1(
trans  on the belt close to the arc.

     
dq

d t
I t I ttrans

arc

(1)

( ) ( )= −1                                                                                                                           (16)

and from here

     q t I t I t dttrans arc

t
(1) ( ) ( ( ) ( ))= −∫ 1

0

                                                                                                             (17)

Of course, q t Strans
(1) ( ) / ∆ 1  is not exactly equal to ρtrans

(1) .The charge does not distribute evenly on the
patch. We can see this by static considerations:

     ρ βstat
statq
S

(1)
(1)

= ∆ 1

.                                                                                                                   (18)

The coefficient β denotes the ratio between a constant charge distribution and the real charge
distribution. Now we assume that during the transient calculation the charge distribution on the
lowest patch is similar to the static distribution:
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     ρ βtrans
transq
S

( )
( )

.1
1

1

=
∆

                                                                                                               (19)

     )).c/)hz(t(qq(
S

EE )1(
trans

)1(
stat

10

surf
transstat −−+

∆ε
β=+                                                       (20)

The error introduced by this assumption decreases the smaller the current derivative and the larger
the number patches are. After improving the simulation for the first patch we need to take a look at
the voltage across the arc. From static consideration we can also see that statE  integrated over the
gap is not exactly the same as ).0z(Eh2 stat =⋅  We introduce a second correction coefficient 1β :

     
0

stat
1

h

h
stat h2dz)z(E

ε
ρ⋅β⋅=∫

−
.                                                                                        (21)

Again we assume that the static value of coefficient 1β  is suitable for the transient calculation. This
allows expressing these coefficients by the static field integrated over the channel and the static
charge.
Now we can write the arc equation as:

     =+
dt

)t(dI
L)t(I)t(R arc

arc 





+⋅∫

−
)1(

stat

)1(
trans

h

h
stat q

q
1dz)z(E                                                       (22)

Using a simple numerical approximation for the time-derivative, we obtain an equation for the arc-
current:

     

t
L)t(R

)tt(I
t

L
q

)tt(q
1dz)z(E

)t(I
arc)1(

stat

)1(
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Now lets consider the junction problem between the arc and the body.
The current in the lowest belt is denoted by J t(1)( ) . It is determined from the knowledge of

the arc current by Kirchhoff’s law. The second current density  J t( )( )2  and densities for all other
belts are calculated by IEMF.

Even in the simpler linear case of a junction between a voluminous object and a perfectly
conducting thin wire special care is needed [50,51,52]. Numerically this application is harder to
handle for two reasons:
i) The arc is very short compared to the size of the body. Large charge and current density

gradients exist close to the junction point.
ii) We need to calculate the electric field in the arc very accurately due to the extreme non-

linearity of the ionization processes.

An space discretisation sufficiently fine enough to resolve these charges and currents would
lead to unacceptably large run-times. Instead we divide the body into relatively large patches.
Typically we use between 31 and 101 belts leading to a belt height of more than 6 mm which is
large compared to the arc length of 0.1 ... 3 mm. As we do not take the real (and unknown) charge
densities on each patch into account we introduce a relevant numerical error. Due to the highly
nonlinear behavior of the arc we need to correct this error. This is done for the first two patches
(nearest to the arc) by multiplying the fields radiated from them by a coefficients Co and 2*(Co-1)
respectively. Using C0 = 1 it is observed that the total charge flowing through the arc is not equal to
the electrostatic charge stored at the beginning of the discharge. Now C0 is slightly corrected until
the total charge passing through the arc equals the electrostatic charge. Values for C0 between 1.01
– 1.20 and tend to approach 1 the finer the discretization is chosen.



12

Let us summarize:
- The arc is modeled using the integral equation by Rompe and Weizel.
- Starting from literature data we improved Rompe and Weizel's coefficient aR  for ESD

applications using an experiment which is independent from both the numerical calculation
presented and the measurements used to validate the numerics.

The junction is treated using Kirchhoff's law and the electrodynamic solution is achieved using the
magnetic integral equation, which is solved by MoM. To correct for errors caused by the
discretization we introduce three correction factors. All of which are physically justified:

- β and  1β  are derived from the electrostatic field.
- C0 and is derived from the total charge.

This leads to a complete numerical solution of the discharge process.

VI. NUMERICAL RESULTS

To validate the algorithm for perfectly conducting objects, we first compared the IEMF
algorithm to literature data of linear scattering problems [47,48] and to analytical results for a
spheroid [46]. Then we included the arc model and compared the calculated currents and fields with
measured data of discharges from a spheroid with semi-axis 31 cm and 5 cm, a sphere and for a
cone. A description of the measurement setup for current, fields and arc length can be found in [1].

In the Fig. 6 calculated and measured currents of the spheroid for different voltages and arc-
lengths are compared.

a) c)

b) d)
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Fig.6. Comparison of calculated and measured arc-currents. Measurements used 5 kV
independent of the distance to the ground plane.

a) h = 0.55 mm; sV/m108.1a 224
R

−⋅= ;    1 GHz bandwidth

b) h = 1.116 mm; sV/m107.0a 224
R

−⋅= ; 3.5 GHz bandwidth

c) h = 0.849 mm; sV/m1038.1a 224
R

−⋅= ;  3.5 GHz bandwidth

d) h = 0.323 mm; sV/m105.2a 224
R

−⋅= ;  3.5 GHz bandwidth

The data of fig. 6 shows the ability to predict the current in spite of the large variation of current
risetime. Although not strongly visible in the data shown one limitation of the arc model needs to
be pointed out: As it neither takes recombination nor diffusion into account, the arc resistance can
not increase again, i.e. one can not expect to be able to model current zero-crossings or current
truncations. But from an EMC point of view this is not an important limitation as the initial
current and field rise cause most of the disturbance threat by ESD.

Let us analyze ESD from the picture of the space-time distribution of currents on the spheroid
(Fig.7).

Fig. 7. Time-space distribution of the surface current on the spheroid at V = 5 kV, h = 0.314 mm,
sV/m106.3a 224

R
−⋅= .

The initial current reaches 96 A. But only a 40 A current wave flows along the spheroid. The
difference is caused by the charges, which had been close to the lower tip. They dominated the peak
current, as shown in fig. 5. The current wave travels up to the top of the spheroid with little
attenuation. At 2.1 ns the wave has reached the top of the spheroid where it gets reflected. In this
moment the current changes direction and a strong electromagnetic field is radiated. The current
wave propagates down to the channel. When it reaches the arc parts of it get reflected again.
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Fig. 8. Electric field of the spheroid on the ground plane at a distance of 0.3 m; V = 10 kV,
h = 1.5 mm, sV/m101.2a 224

R
−⋅=

Knowing how a discharging body radiates into the space helps to define the required
robustness and shielding of electronics in its vicinity. From the current distribution on the body the
transient fields were calculated using integral expressions and compared to measurements as shown
in figs.8 and 9.

The electric field shown in fig. 8 is displayed as a charging process; i.e. the static field is
shown after the discharge, not prior to the discharge as it occurs in reality. This is due to the fact
that the field sensors cannot measure DC-fields. Their lower cut-off frequency is at about 200 kHz.
The sloping of the measured field data is also an effect of the lower cut-off frequency. For the
magnetic field shown in fig. 9 larger differences occur after the zero crossing. This is probably due
to the inability of the arc model to simulate current zero-crossings. Figs. 8 and 9 showed the fields
on the ground plane. The spatial field distribution is shown in fig. 10. No free-space measurements
were available to compare.

Fig 9. Magnetic field of the spheroid on the ground plane at a distance of 0.6 m; V = 10 kV,

h = 2.0 mm, sV/m1027.1a 224
R

−⋅=
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Fig.10. Magnetic field for different space directions at 1 m distance, V = 5 kV, h = 0.6 mm,
sV/m1051.2a 224

R
−⋅= .

Fig.11 shows the magnetic field for different directions in space at a distance of 1 m. The
maximal values do not change much apart from very small angles. But the smaller the angle
becomes the shorter the pulses get; i.e. fields contain higher frequency components.

time at 1.3 nsec time at 3.2 nsec

time at 1.9 nsec time at 3.4 nsec
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time at 2.6 nsec time at 4.3 nsec

Fig. 11. Lines of constant magnetic field of the spheroid. V=10 kV. h=0.625 mm. 4
R 105.3a −⋅=

The time resolved process of radiation and wave guiding is shown in form of lines of
constant magnetic field in Fig. 11. At 1.9 ns the initial current wave has traveled approximately
75% of the spheroid’s length. At 3.2 ns the wave front has left the body. Although waves are
radiated at every spot of the spheroid, the major radiation takes place at the upper and lower tips
where the curvature is changing most rapidly. The last three pictures show that a large portion of the
energy is guided by the surface and radiated in a direction of about 30o for this very rapidly rising
ESD event.

VII. COMPARISON TO TRANSIENT FIELDS FROM HUMANS

In most situations the first few nanoseconds of an ESD event determine the disturbance risk. Often
it is sufficient to model this part of the event. With the exception of furniture ESD the most severe
ESD event is the discharge of a human through a piece of metal. This is the reference for the widely
applied ESD test standard IEC 61000-4-2. A spheroid of 0.2 and 0.02 m semi axis as shown in fig.
12 can approximate the hand/metal geometry.

Fig.12. Hand/metal piece compared to a 0.2 m / 0.02 m spheroid.

This model allows simulating important parameters such as the peak values for current and fields
and their derivatives, figs 13, 14 and 15. Other parameters, which are usually of lesser importance
for EMC, like the total charge; the energy or the tailing current can not be modeled by this
simplified geometry. But it is of great help to achieve a more realistic representation of the
excitation in simulations, which solve coupling into circuits or enclosures [20]. It also allows
analyzing the influence of humidity and speed of approach on ESD severity [53] as it includes the
arc.
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Fig.13: Peak current of a human/metal ESD (8 mm diameter, 75 mm long metal piece) at 10 kV
compared to simulated ESDs of a 0.2 m, 0.02 m semiaxis spheroid. The value of aR varied from 4
10-4 m2/V2s at 0.55 mm  to 1 10-4 m2/V2s at 2.7 mm, see table 1. A Jon Barth Electronics current
target was used which has a flat frequency response up to 10 GHz.

The simple model matches the measured peak current values shown in fig. 13 quite well.
Discharges with an arc length of 2.7 mm (Paschen value) showed a rise time of 2.8 ns to 3.8 ns. For
an arc length of 1.6 mm the current matches the simulator specifications given in IEC 61000-4-2
(rise time: 0.7-1 ns, peak value: 3.75 A/kV) at best: Its risetime is 0.79 ns and its peak value reaches
4 A/kV. For 5 kV the best match arc length is around 0.8 mm. Current derivatives are compared in
fig.14.

Fig14: Peak current derivative of a human metal ESD (6 mm diameter, 80 mm long metal piece) at
10 kV compared to simulated ESDs of a 0.2 m, 0.02 m semiaxis spheroid.

Simulated peak current derivatives vary from 6 A/ns to 1000 A/ns. They match the measured values
well below 2 mm arc length. Above the measured derivatives are lower. As an example for the field
the magnetic field at a distance of 0.5 m is shown in fig.15.
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Fig15: Peak magnetic field of a human metal ESD compared to simulation using the same
parameters as in fig. 15. The field was measured using a ground based B-dot sensor with self
integration (2 MHz - 2 GHz +/- 1 dB) into an HP54720D oscilloscope (8 GS/s and 2 GHz analogue
bandwidth) The distance was  0.5 m measured horizontally from the discharge point. The human
stood in front of a vertical standing 2 m x 2 m ground plane.

The simulation matches the measured magnetic field quite well. Deviations at shorter arc lengths
are a result of the 2 GHz measurement bandwidth limitation. For arc lengths above 2.5 mm the
simulation provides lower values than the measurement. This is caused by not modeling the body
discharge. In a human/metal ESD the longer the arc length is the smaller the initial current peak will
be. But the discharge current of the body will not be influenced. Above some arc length the field
radiated from the body current will be larger than the fields caused by the hand-metal structure. The
transition at which both field components are of the same magnitude depend on the distance to the
hand/metal structure and to the body. But attenuation on the arm and the charge accumulation at the
tip of the metal piece will always cause a faster rising field from the hand/metal structure than from
the body.

VIII. CONCLUSION

In this paper an ESD source model was presented. It combines a body of revolution with the non-
linear arc and allows simulating parameters important for EMI of ESD such as peak currents, fields
and their derivatives. Its strength lies in the inclusion of the extreme non-linear arc but its present
implementation is limited to bodies of revolution.

Differences between measurements and simulations are less than +/- 20 % for the peak field and
current values at most arc lengths and voltages and not more than +/- 50 % for extreme cases. The
error must be judged against the strong influence of the arc length on the currents and fields. Peak
field and current values vary by more than an order of magnitude with arc length for the same
voltage and geometry. Peak derivative values vary by up to three orders of magnitude. Thus, the
algorithm provides a good excitation model if coupling into circuits or enclosures is to be analyzed.
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APPENDIX
Glossary
Statistical time lag is the time interval in a high voltage breakdown which elapses between the
moment at which the field strength reaches the value at which a breakdown is possible and the
moment of the actual breakdown occurs. The delay is caused by the lag of seed electrons for the
avalanche. Electrons attached to water molecules are the most important donors for seed electrons
in practical ESD. Dry conditions cause long time lags [1,53].

Paschen value is the longest gap distance at which a breakdown is possible in a homogeneous
electrostatic field. The value is calculated by Paschen’s law [54].

Arc length is the gap distance in the moment of the breakdown. We assume straight arcs.
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